|
|
|
|
|
|
|
|
import argparse |
|
|
import torch |
|
|
from tqdm import tqdm |
|
|
import random |
|
|
|
|
|
from llava.constants import ( |
|
|
IMAGE_TOKEN_INDEX, |
|
|
DEFAULT_IMAGE_TOKEN, |
|
|
DEFAULT_IM_START_TOKEN, |
|
|
DEFAULT_IM_END_TOKEN, |
|
|
IMAGE_PLACEHOLDER, |
|
|
) |
|
|
from llava.conversation import conv_templates, SeparatorStyle |
|
|
from llava.model.builder import load_pretrained_model |
|
|
from llava.utils import disable_torch_init |
|
|
from llava.mm_utils import ( |
|
|
process_images, |
|
|
tokenizer_image_token, |
|
|
get_model_name_from_path, |
|
|
) |
|
|
|
|
|
from PIL import Image |
|
|
|
|
|
import requests |
|
|
from PIL import Image |
|
|
from io import BytesIO |
|
|
import re |
|
|
import os |
|
|
import json |
|
|
import cv2 |
|
|
from pycocotools.mask import encode, decode, frPyObjects |
|
|
import numpy as np |
|
|
|
|
|
def blend_mask(input_img, binary_mask, alpha=0.7): |
|
|
if input_img.ndim == 2: |
|
|
return input_img |
|
|
mask_image = np.zeros(input_img.shape, np.uint8) |
|
|
mask_image[:, :, 1] = 255 |
|
|
mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2) |
|
|
blend_image = input_img[:, :, :].copy() |
|
|
pos_idx = binary_mask > 0 |
|
|
for ind in range(input_img.ndim): |
|
|
ch_img1 = input_img[:, :, ind] |
|
|
ch_img2 = mask_image[:, :, ind] |
|
|
ch_img3 = blend_image[:, :, ind] |
|
|
ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx] |
|
|
blend_image[:, :, ind] = ch_img3 |
|
|
return blend_image |
|
|
|
|
|
def image_parser(args): |
|
|
print(args.image_file) |
|
|
out = args.image_file.split(args.sep) |
|
|
print(args.sep) |
|
|
print(out) |
|
|
return out |
|
|
|
|
|
|
|
|
def load_image(image_file): |
|
|
if image_file.startswith("http") or image_file.startswith("https"): |
|
|
response = requests.get(image_file) |
|
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
else: |
|
|
image = Image.open(image_file).convert("RGB") |
|
|
return image |
|
|
|
|
|
|
|
|
def load_images(image_files): |
|
|
out = [] |
|
|
for image_file in image_files: |
|
|
image = load_image(image_file) |
|
|
out.append(image) |
|
|
return out |
|
|
|
|
|
|
|
|
prompt = "Identify the single object covered by the green mask without describing it. Note that it is not a hand. Format your answer as follows: The object covered by the green mask is" |
|
|
model_path = "liuhaotian/llava-v1.5-7b" |
|
|
|
|
|
|
|
|
def eval_model(args): |
|
|
|
|
|
disable_torch_init() |
|
|
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model( |
|
|
args.model_path, args.model_base, model_name |
|
|
) |
|
|
|
|
|
qs = args.query |
|
|
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN |
|
|
if IMAGE_PLACEHOLDER in qs: |
|
|
if model.config.mm_use_im_start_end: |
|
|
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) |
|
|
else: |
|
|
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) |
|
|
else: |
|
|
if model.config.mm_use_im_start_end: |
|
|
qs = image_token_se + "\n" + qs |
|
|
else: |
|
|
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs |
|
|
|
|
|
if "llama-2" in model_name.lower(): |
|
|
conv_mode = "llava_llama_2" |
|
|
elif "mistral" in model_name.lower(): |
|
|
conv_mode = "mistral_instruct" |
|
|
elif "v1.6-34b" in model_name.lower(): |
|
|
conv_mode = "chatml_direct" |
|
|
elif "v1" in model_name.lower(): |
|
|
conv_mode = "llava_v1" |
|
|
elif "mpt" in model_name.lower(): |
|
|
conv_mode = "mpt" |
|
|
else: |
|
|
conv_mode = "llava_v0" |
|
|
|
|
|
if args.conv_mode is not None and conv_mode != args.conv_mode: |
|
|
print( |
|
|
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( |
|
|
conv_mode, args.conv_mode, args.conv_mode |
|
|
) |
|
|
) |
|
|
else: |
|
|
args.conv_mode = conv_mode |
|
|
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
|
conv.append_message(conv.roles[0], qs) |
|
|
conv.append_message(conv.roles[1], None) |
|
|
prompt = conv.get_prompt() |
|
|
|
|
|
|
|
|
new_data_list = [] |
|
|
with open(args.json_path, "r") as f: |
|
|
datas = json.load(f) |
|
|
total_items = len(datas) |
|
|
for i, data in tqdm(enumerate(datas), total=total_items, desc="Processing"): |
|
|
|
|
|
query_path = data["first_frame_image"] |
|
|
query_path = os.path.join(args.image_path, query_path) |
|
|
frame = cv2.imread(query_path) |
|
|
|
|
|
for obj in data["first_frame_anns"]: |
|
|
images = [] |
|
|
mask = decode(obj["segmentation"]) |
|
|
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST) |
|
|
|
|
|
out = blend_mask(frame, mask) |
|
|
image = Image.fromarray(out).convert("RGB") |
|
|
images.append(image) |
|
|
image_sizes = [x.size for x in images] |
|
|
images_tensor = process_images( |
|
|
images, |
|
|
image_processor, |
|
|
model.config |
|
|
).to(model.device, dtype=torch.float16) |
|
|
|
|
|
input_ids = ( |
|
|
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") |
|
|
.unsqueeze(0) |
|
|
.cuda() |
|
|
) |
|
|
|
|
|
with torch.inference_mode(): |
|
|
output_ids = model.generate( |
|
|
input_ids, |
|
|
images=images_tensor, |
|
|
image_sizes=image_sizes, |
|
|
do_sample=True if args.temperature > 0 else False, |
|
|
temperature=args.temperature, |
|
|
top_p=args.top_p, |
|
|
num_beams=args.num_beams, |
|
|
max_new_tokens=args.max_new_tokens, |
|
|
use_cache=True, |
|
|
) |
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
|
obj["text"] = outputs |
|
|
new_data_list.append(data) |
|
|
with open(args.save_path, "w") as f: |
|
|
json.dump(new_data_list, f) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--image_path", type=str, required=True, help="Path to the images.") |
|
|
parser.add_argument("--json_path", type=str, required=True, help="Path to the annotations.") |
|
|
parser.add_argument("--save_path", type=str, required=True, help="Path to save the output.") |
|
|
path_args = parser.parse_args() |
|
|
|
|
|
args = type('Args', (), { |
|
|
"model_path": model_path, |
|
|
"model_base": None, |
|
|
"model_name": get_model_name_from_path(model_path), |
|
|
"query": prompt, |
|
|
"conv_mode": None, |
|
|
"sep": ",", |
|
|
"temperature": 0, |
|
|
"top_p": None, |
|
|
"num_beams": 1, |
|
|
"max_new_tokens": 512, |
|
|
"image_path": path_args.image_path, |
|
|
"json_path": path_args.json_path, |
|
|
"save_path": path_args.save_path |
|
|
})() |
|
|
|
|
|
eval_model(args) |
|
|
|