sam2 / vis.py
YuqianFu's picture
Upload folder using huggingface_hub
1867b21 verified
import argparse
import json
import tqdm
import cv2
import os
import numpy as np
from pycocotools import mask as mask_utils
import random
from PIL import Image
EVALMODE = "test"
def blend_mask(input_img, binary_mask, alpha=0.3):
mask_image = np.zeros(input_img.shape, np.uint8)
mask_image[:, :, 0] = 255
mask_image[:, :, 1] = 165
mask_image[:, :, 2] = 0
mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2)
blend_image = input_img[:, :, :].copy()
pos_idx = binary_mask > 0
for ind in range(input_img.ndim):
ch_img1 = input_img[:, :, ind]
ch_img2 = mask_image[:, :, ind]
ch_img3 = blend_image[:, :, ind]
ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx]
blend_image[:, :, ind] = ch_img3
return blend_image
def upsample_mask(mask, frame):
H, W = frame.shape[:2]
mH, mW = mask.shape[:2]
if W > H:
ratio = mW / W
h = H * ratio
diff = int((mH - h) // 2)
if diff == 0:
mask = mask
else:
mask = mask[diff:-diff]
else:
ratio = mH / H
w = W * ratio
diff = int((mW - w) // 2)
if diff == 0:
mask = mask
else:
mask = mask[:, diff:-diff]
mask = cv2.resize(mask, (W, H))
return mask
def downsample(mask, frame):
H, W = frame.shape[:2]
mH, mW = mask.shape[:2]
mask = cv2.resize(mask, (W, H))
return mask
#datapath /datasegswap
#inference_path /inference_xmem_ego_last/coco
#output /vis_piano
#--show_gt要加上
if __name__ == "__main__":
out_path = "/home/yuqian_fu/Projects/sam2/predicted_mask"
frame = cv2.imread(
"/data/work-gcp-europe-west4-a/yuqian_fu/Ego/multi_view_data_2/multi_vew_data_3/000001-color.jpg"
)
mask = Image.open("/data/work-gcp-europe-west4-a/yuqian_fu/Ego/multi_view_data_2/mask/000001-label.png")
mask = np.array(mask)
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]))
mask = upsample_mask(mask, frame)
out = blend_mask(frame, mask)
cv2.imwrite(
f"{out_path}/cor_0.jpg",
out,
)