Training in progress, step 2200, checkpoint
Browse files- .gitattributes +1 -0
- checkpoint-2200/added_tokens.json +24 -0
- checkpoint-2200/config.json +29 -0
- checkpoint-2200/generation_config.json +9 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/global_step2200/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-2200/latest +1 -0
- checkpoint-2200/merges.txt +0 -0
- checkpoint-2200/model-00001-of-00004.safetensors +3 -0
- checkpoint-2200/model-00002-of-00004.safetensors +3 -0
- checkpoint-2200/model-00003-of-00004.safetensors +3 -0
- checkpoint-2200/model-00004-of-00004.safetensors +3 -0
- checkpoint-2200/model.safetensors.index.json +346 -0
- checkpoint-2200/rng_state_0.pth +3 -0
- checkpoint-2200/rng_state_1.pth +3 -0
- checkpoint-2200/rng_state_2.pth +3 -0
- checkpoint-2200/rng_state_3.pth +3 -0
- checkpoint-2200/rng_state_4.pth +3 -0
- checkpoint-2200/rng_state_5.pth +3 -0
- checkpoint-2200/rng_state_6.pth +3 -0
- checkpoint-2200/rng_state_7.pth +3 -0
- checkpoint-2200/scheduler.pt +3 -0
- checkpoint-2200/special_tokens_map.json +25 -0
- checkpoint-2200/tokenizer.json +3 -0
- checkpoint-2200/tokenizer_config.json +208 -0
- checkpoint-2200/trainer_state.json +3113 -0
- checkpoint-2200/training_args.bin +3 -0
- checkpoint-2200/vocab.json +0 -0
- checkpoint-2200/zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -37,3 +37,4 @@ tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
| 37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
checkpoint-1650/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
checkpoint-1650/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
checkpoint-2200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-2200/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-2200/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ZMC2019/Qwen2.5-Math-7B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 18944,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 28,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 4,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"rope_theta": 300000.0,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.49.0",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 152064
|
| 29 |
+
}
|
checkpoint-2200/generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": [
|
| 4 |
+
151645,
|
| 5 |
+
151643
|
| 6 |
+
],
|
| 7 |
+
"pad_token_id": 151643,
|
| 8 |
+
"transformers_version": "4.49.0"
|
| 9 |
+
}
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:36fe7a20d10e5d90106430a268fad92466c60a921af6b5316a61faf64d5be6d5
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f2ccccb51734e5487646c471a342297220c748b72156af50c40620c99b54700
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:491f100f4f0501afddfe9c978d651d0c3425d244dde56595bc7839c0fc8052a0
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7ab9e75d56c5826e0de7845f1ad42875ae69519977f52a970cc4985ece3d60b
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be166f92d224f7073108d200ac000a5104f59c9ba44865894c035ec3c9631fa9
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce154f803343369023169e297ab22f4c784cb4e78c8213e70745e5572ed768b9
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14f32f9f7cd3686e73c6605100dedbdb71d55abe74dbaaec843098ffa610401f
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b28e14a149912b0c7cb42dba554bf624157d841ca670a1d1c1b7c983f8e9b8c
|
| 3 |
+
size 11423429708
|
checkpoint-2200/global_step2200/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:877e520477bc3424104fdfc8dad8d5d6e6f94a40cc1e614e4a64fcc4f5864f9e
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4887622e782f6eefd68430d06c6fc4b4a4f18305550a2245e3817890e5c1aa7
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:860bf99fdf7d23296dafdd799612c49d5e0122b35cbca8ea76c917beefbfa522
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e12d39794c930d442508d30d8cf95543165fe8c8917de477c53cd4d013dcd958
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9e7c65965f129119059c6a57c7a7322ee09f907ff35ecbc959a6205142250c5
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9709d2d8ad876889faa375c9b6ff7270e8408f8642b78450808da21ff85925ca
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:186d7977377b82a9b0fb9c1b1130db0649a8cc975375377bf592ab5249768b62
|
| 3 |
+
size 164885
|
checkpoint-2200/global_step2200/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb25b8a9335cee877843153483a761fcb5458681a9f26f2ccbd41b11c443e71e
|
| 3 |
+
size 164885
|
checkpoint-2200/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2200
|
checkpoint-2200/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2200/model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d78f6c6e06cb7bfd318baf401c4efa8d2f0a2f325c53b1f9b34512cc2f756d96
|
| 3 |
+
size 4877660776
|
checkpoint-2200/model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce864a76eab9bbe8dd349a9108c7355bf7a92f19452b1f936cc720b6e78ab468
|
| 3 |
+
size 4932751008
|
checkpoint-2200/model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3fded280965a9697cb46f9f287e972aab63c23a82226e64666f14edf811d4c3
|
| 3 |
+
size 4330865200
|
checkpoint-2200/model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2acc55d626073b9ef2a7a6382a2ece9b0c090c6f386f8ca101fe2e94cfa7e962
|
| 3 |
+
size 1089994880
|
checkpoint-2200/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15231233024
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 345 |
+
}
|
| 346 |
+
}
|
checkpoint-2200/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08282b46825aa78d10fe10e3fea89555c5b5a691b261a3ddfd58fcb58370edff
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbab71d98a3a9a92df82a6bba463947327c3a1bcf35cd9f4f46114641fc42dd9
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:caac82d57d878d30219a4f9ec289a97ff90c53afc160b968f251b3fd3454b8d8
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19762d2d370222b01817da11bbaa6665d542293373186d66f754e7246bb861ed
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00c7508b346a7d3c5c23392845f1d013331114ade778794b76e919cb3ed5d33e
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b89de7d14dd20a191f56b74c816ef8b7fe5c171e31efbeadbf321c4539ed68c3
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c71152053553e6e22d670fbc4fd7550bf8a046b54cad7b71869787986a6a42c
|
| 3 |
+
size 15984
|
checkpoint-2200/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b67db12a26a26ffe03d9afc84a43857eb2e5b2fec2dd189653b415f74208190
|
| 3 |
+
size 15984
|
checkpoint-2200/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54a6219d359c6fef1cbfa3f55a59595228ae0b1d09223b5d474db3a6957c1d42
|
| 3 |
+
size 1064
|
checkpoint-2200/special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": "<|im_end|>"
|
| 25 |
+
}
|
checkpoint-2200/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-2200/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|im_end|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-2200/trainer_state.json
ADDED
|
@@ -0,0 +1,3113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.050326188257223,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 2200,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.004659832246039142,
|
| 13 |
+
"grad_norm": 55.709484937361424,
|
| 14 |
+
"learning_rate": 7.763975155279503e-07,
|
| 15 |
+
"loss": 11.0694,
|
| 16 |
+
"step": 5
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.009319664492078284,
|
| 20 |
+
"grad_norm": 57.1398137451701,
|
| 21 |
+
"learning_rate": 1.5527950310559006e-06,
|
| 22 |
+
"loss": 10.8846,
|
| 23 |
+
"step": 10
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.013979496738117428,
|
| 27 |
+
"grad_norm": 97.98047478379912,
|
| 28 |
+
"learning_rate": 2.329192546583851e-06,
|
| 29 |
+
"loss": 9.4413,
|
| 30 |
+
"step": 15
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.01863932898415657,
|
| 34 |
+
"grad_norm": 32.76887701215898,
|
| 35 |
+
"learning_rate": 3.1055900621118013e-06,
|
| 36 |
+
"loss": 3.214,
|
| 37 |
+
"step": 20
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.023299161230195712,
|
| 41 |
+
"grad_norm": 3.315394944010228,
|
| 42 |
+
"learning_rate": 3.881987577639752e-06,
|
| 43 |
+
"loss": 1.346,
|
| 44 |
+
"step": 25
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.027958993476234855,
|
| 48 |
+
"grad_norm": 1.29231664681427,
|
| 49 |
+
"learning_rate": 4.658385093167702e-06,
|
| 50 |
+
"loss": 1.006,
|
| 51 |
+
"step": 30
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.032618825722273995,
|
| 55 |
+
"grad_norm": 0.8629586527731651,
|
| 56 |
+
"learning_rate": 5.4347826086956525e-06,
|
| 57 |
+
"loss": 0.8411,
|
| 58 |
+
"step": 35
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.03727865796831314,
|
| 62 |
+
"grad_norm": 0.6212648141101664,
|
| 63 |
+
"learning_rate": 6.2111801242236025e-06,
|
| 64 |
+
"loss": 0.7754,
|
| 65 |
+
"step": 40
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.04193849021435228,
|
| 69 |
+
"grad_norm": 0.46040470834395936,
|
| 70 |
+
"learning_rate": 6.9875776397515525e-06,
|
| 71 |
+
"loss": 0.7136,
|
| 72 |
+
"step": 45
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.046598322460391424,
|
| 76 |
+
"grad_norm": 0.42693871288027446,
|
| 77 |
+
"learning_rate": 7.763975155279503e-06,
|
| 78 |
+
"loss": 0.6831,
|
| 79 |
+
"step": 50
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.05125815470643057,
|
| 83 |
+
"grad_norm": 0.44192720551532577,
|
| 84 |
+
"learning_rate": 8.540372670807453e-06,
|
| 85 |
+
"loss": 0.646,
|
| 86 |
+
"step": 55
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.05591798695246971,
|
| 90 |
+
"grad_norm": 0.31222059058105195,
|
| 91 |
+
"learning_rate": 9.316770186335403e-06,
|
| 92 |
+
"loss": 0.6088,
|
| 93 |
+
"step": 60
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.06057781919850885,
|
| 97 |
+
"grad_norm": 0.30027349299916717,
|
| 98 |
+
"learning_rate": 1.0093167701863353e-05,
|
| 99 |
+
"loss": 0.5932,
|
| 100 |
+
"step": 65
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.06523765144454799,
|
| 104 |
+
"grad_norm": 0.3320480978786744,
|
| 105 |
+
"learning_rate": 1.0869565217391305e-05,
|
| 106 |
+
"loss": 0.5892,
|
| 107 |
+
"step": 70
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.06989748369058714,
|
| 111 |
+
"grad_norm": 0.3001101299512147,
|
| 112 |
+
"learning_rate": 1.1645962732919255e-05,
|
| 113 |
+
"loss": 0.5713,
|
| 114 |
+
"step": 75
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.07455731593662628,
|
| 118 |
+
"grad_norm": 0.30892715626333545,
|
| 119 |
+
"learning_rate": 1.2422360248447205e-05,
|
| 120 |
+
"loss": 0.5619,
|
| 121 |
+
"step": 80
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.07921714818266543,
|
| 125 |
+
"grad_norm": 0.3319072685834915,
|
| 126 |
+
"learning_rate": 1.3198757763975155e-05,
|
| 127 |
+
"loss": 0.5525,
|
| 128 |
+
"step": 85
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.08387698042870456,
|
| 132 |
+
"grad_norm": 0.29047402255141175,
|
| 133 |
+
"learning_rate": 1.3975155279503105e-05,
|
| 134 |
+
"loss": 0.5628,
|
| 135 |
+
"step": 90
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.08853681267474371,
|
| 139 |
+
"grad_norm": 0.25922715271689156,
|
| 140 |
+
"learning_rate": 1.4751552795031057e-05,
|
| 141 |
+
"loss": 0.5443,
|
| 142 |
+
"step": 95
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.09319664492078285,
|
| 146 |
+
"grad_norm": 0.31531185304643106,
|
| 147 |
+
"learning_rate": 1.5527950310559007e-05,
|
| 148 |
+
"loss": 0.5296,
|
| 149 |
+
"step": 100
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.097856477166822,
|
| 153 |
+
"grad_norm": 0.3013647908850556,
|
| 154 |
+
"learning_rate": 1.630434782608696e-05,
|
| 155 |
+
"loss": 0.5243,
|
| 156 |
+
"step": 105
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.10251630941286113,
|
| 160 |
+
"grad_norm": 0.3047350591065195,
|
| 161 |
+
"learning_rate": 1.7080745341614907e-05,
|
| 162 |
+
"loss": 0.5261,
|
| 163 |
+
"step": 110
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.10717614165890028,
|
| 167 |
+
"grad_norm": 0.30780196150291267,
|
| 168 |
+
"learning_rate": 1.785714285714286e-05,
|
| 169 |
+
"loss": 0.5231,
|
| 170 |
+
"step": 115
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.11183597390493942,
|
| 174 |
+
"grad_norm": 0.3804666896095633,
|
| 175 |
+
"learning_rate": 1.8633540372670807e-05,
|
| 176 |
+
"loss": 0.5098,
|
| 177 |
+
"step": 120
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.11649580615097857,
|
| 181 |
+
"grad_norm": 0.2868238329098672,
|
| 182 |
+
"learning_rate": 1.940993788819876e-05,
|
| 183 |
+
"loss": 0.5057,
|
| 184 |
+
"step": 125
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.1211556383970177,
|
| 188 |
+
"grad_norm": 0.32341698454060924,
|
| 189 |
+
"learning_rate": 2.0186335403726707e-05,
|
| 190 |
+
"loss": 0.5114,
|
| 191 |
+
"step": 130
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.12581547064305684,
|
| 195 |
+
"grad_norm": 0.4221000244611152,
|
| 196 |
+
"learning_rate": 2.096273291925466e-05,
|
| 197 |
+
"loss": 0.5106,
|
| 198 |
+
"step": 135
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.13047530288909598,
|
| 202 |
+
"grad_norm": 0.47197386491626697,
|
| 203 |
+
"learning_rate": 2.173913043478261e-05,
|
| 204 |
+
"loss": 0.4951,
|
| 205 |
+
"step": 140
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.13513513513513514,
|
| 209 |
+
"grad_norm": 0.3721540533945164,
|
| 210 |
+
"learning_rate": 2.2515527950310562e-05,
|
| 211 |
+
"loss": 0.522,
|
| 212 |
+
"step": 145
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.13979496738117428,
|
| 216 |
+
"grad_norm": 0.4388944569421825,
|
| 217 |
+
"learning_rate": 2.329192546583851e-05,
|
| 218 |
+
"loss": 0.4959,
|
| 219 |
+
"step": 150
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.14445479962721341,
|
| 223 |
+
"grad_norm": 0.4622898334441083,
|
| 224 |
+
"learning_rate": 2.4068322981366462e-05,
|
| 225 |
+
"loss": 0.5041,
|
| 226 |
+
"step": 155
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.14911463187325255,
|
| 230 |
+
"grad_norm": 0.49630920093444675,
|
| 231 |
+
"learning_rate": 2.484472049689441e-05,
|
| 232 |
+
"loss": 0.4849,
|
| 233 |
+
"step": 160
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.15377446411929171,
|
| 237 |
+
"grad_norm": 0.46849210325540636,
|
| 238 |
+
"learning_rate": 2.5621118012422362e-05,
|
| 239 |
+
"loss": 0.4961,
|
| 240 |
+
"step": 165
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.15843429636533085,
|
| 244 |
+
"grad_norm": 0.4082563546888238,
|
| 245 |
+
"learning_rate": 2.639751552795031e-05,
|
| 246 |
+
"loss": 0.4719,
|
| 247 |
+
"step": 170
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.16309412861137,
|
| 251 |
+
"grad_norm": 0.4549138940471945,
|
| 252 |
+
"learning_rate": 2.7173913043478262e-05,
|
| 253 |
+
"loss": 0.4852,
|
| 254 |
+
"step": 175
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.16775396085740912,
|
| 258 |
+
"grad_norm": 0.41032309538662626,
|
| 259 |
+
"learning_rate": 2.795031055900621e-05,
|
| 260 |
+
"loss": 0.478,
|
| 261 |
+
"step": 180
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.1724137931034483,
|
| 265 |
+
"grad_norm": 0.36866874054662224,
|
| 266 |
+
"learning_rate": 2.8726708074534165e-05,
|
| 267 |
+
"loss": 0.481,
|
| 268 |
+
"step": 185
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.17707362534948742,
|
| 272 |
+
"grad_norm": 0.36280659725390446,
|
| 273 |
+
"learning_rate": 2.9503105590062114e-05,
|
| 274 |
+
"loss": 0.4908,
|
| 275 |
+
"step": 190
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.18173345759552656,
|
| 279 |
+
"grad_norm": 0.4446282244198985,
|
| 280 |
+
"learning_rate": 3.0279503105590062e-05,
|
| 281 |
+
"loss": 0.4802,
|
| 282 |
+
"step": 195
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.1863932898415657,
|
| 286 |
+
"grad_norm": 0.4818264381472692,
|
| 287 |
+
"learning_rate": 3.1055900621118014e-05,
|
| 288 |
+
"loss": 0.4818,
|
| 289 |
+
"step": 200
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.19105312208760486,
|
| 293 |
+
"grad_norm": 0.5191372230429591,
|
| 294 |
+
"learning_rate": 3.183229813664597e-05,
|
| 295 |
+
"loss": 0.4708,
|
| 296 |
+
"step": 205
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.195712954333644,
|
| 300 |
+
"grad_norm": 0.5690145277815086,
|
| 301 |
+
"learning_rate": 3.260869565217392e-05,
|
| 302 |
+
"loss": 0.4848,
|
| 303 |
+
"step": 210
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.20037278657968313,
|
| 307 |
+
"grad_norm": 0.41006685540485915,
|
| 308 |
+
"learning_rate": 3.3385093167701865e-05,
|
| 309 |
+
"loss": 0.467,
|
| 310 |
+
"step": 215
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.20503261882572227,
|
| 314 |
+
"grad_norm": 0.47272355547942274,
|
| 315 |
+
"learning_rate": 3.4161490683229814e-05,
|
| 316 |
+
"loss": 0.4716,
|
| 317 |
+
"step": 220
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.2096924510717614,
|
| 321 |
+
"grad_norm": 0.5135260711958035,
|
| 322 |
+
"learning_rate": 3.493788819875777e-05,
|
| 323 |
+
"loss": 0.4536,
|
| 324 |
+
"step": 225
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.21435228331780057,
|
| 328 |
+
"grad_norm": 0.5124408748792798,
|
| 329 |
+
"learning_rate": 3.571428571428572e-05,
|
| 330 |
+
"loss": 0.467,
|
| 331 |
+
"step": 230
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.2190121155638397,
|
| 335 |
+
"grad_norm": 0.4205466417850958,
|
| 336 |
+
"learning_rate": 3.6490683229813665e-05,
|
| 337 |
+
"loss": 0.4647,
|
| 338 |
+
"step": 235
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.22367194780987884,
|
| 342 |
+
"grad_norm": 0.6251611138936444,
|
| 343 |
+
"learning_rate": 3.7267080745341614e-05,
|
| 344 |
+
"loss": 0.4624,
|
| 345 |
+
"step": 240
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.22833178005591798,
|
| 349 |
+
"grad_norm": 0.5610747747609784,
|
| 350 |
+
"learning_rate": 3.804347826086957e-05,
|
| 351 |
+
"loss": 0.4676,
|
| 352 |
+
"step": 245
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.23299161230195714,
|
| 356 |
+
"grad_norm": 0.4692752738735764,
|
| 357 |
+
"learning_rate": 3.881987577639752e-05,
|
| 358 |
+
"loss": 0.4592,
|
| 359 |
+
"step": 250
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.23765144454799628,
|
| 363 |
+
"grad_norm": 0.5435654364057863,
|
| 364 |
+
"learning_rate": 3.9596273291925465e-05,
|
| 365 |
+
"loss": 0.4679,
|
| 366 |
+
"step": 255
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.2423112767940354,
|
| 370 |
+
"grad_norm": 0.5264727485653637,
|
| 371 |
+
"learning_rate": 4.0372670807453414e-05,
|
| 372 |
+
"loss": 0.463,
|
| 373 |
+
"step": 260
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.24697110904007455,
|
| 377 |
+
"grad_norm": 0.5096976732033014,
|
| 378 |
+
"learning_rate": 4.114906832298137e-05,
|
| 379 |
+
"loss": 0.4613,
|
| 380 |
+
"step": 265
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.2516309412861137,
|
| 384 |
+
"grad_norm": 0.4649125930738299,
|
| 385 |
+
"learning_rate": 4.192546583850932e-05,
|
| 386 |
+
"loss": 0.4594,
|
| 387 |
+
"step": 270
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.25629077353215285,
|
| 391 |
+
"grad_norm": 0.5173502447936299,
|
| 392 |
+
"learning_rate": 4.270186335403727e-05,
|
| 393 |
+
"loss": 0.4652,
|
| 394 |
+
"step": 275
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.26095060577819196,
|
| 398 |
+
"grad_norm": 0.3868002746815184,
|
| 399 |
+
"learning_rate": 4.347826086956522e-05,
|
| 400 |
+
"loss": 0.4572,
|
| 401 |
+
"step": 280
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.2656104380242311,
|
| 405 |
+
"grad_norm": 0.5001940885551612,
|
| 406 |
+
"learning_rate": 4.425465838509317e-05,
|
| 407 |
+
"loss": 0.4613,
|
| 408 |
+
"step": 285
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.2702702702702703,
|
| 412 |
+
"grad_norm": 0.6213239402228385,
|
| 413 |
+
"learning_rate": 4.5031055900621124e-05,
|
| 414 |
+
"loss": 0.4633,
|
| 415 |
+
"step": 290
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.2749301025163094,
|
| 419 |
+
"grad_norm": 0.6125652570862165,
|
| 420 |
+
"learning_rate": 4.580745341614907e-05,
|
| 421 |
+
"loss": 0.4673,
|
| 422 |
+
"step": 295
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.27958993476234856,
|
| 426 |
+
"grad_norm": 0.7479197761570839,
|
| 427 |
+
"learning_rate": 4.658385093167702e-05,
|
| 428 |
+
"loss": 0.4693,
|
| 429 |
+
"step": 300
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.2842497670083877,
|
| 433 |
+
"grad_norm": 0.5483826450591869,
|
| 434 |
+
"learning_rate": 4.736024844720497e-05,
|
| 435 |
+
"loss": 0.4579,
|
| 436 |
+
"step": 305
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.28890959925442683,
|
| 440 |
+
"grad_norm": 0.6644586513259841,
|
| 441 |
+
"learning_rate": 4.8136645962732924e-05,
|
| 442 |
+
"loss": 0.45,
|
| 443 |
+
"step": 310
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.293569431500466,
|
| 447 |
+
"grad_norm": 0.8188490252541196,
|
| 448 |
+
"learning_rate": 4.891304347826087e-05,
|
| 449 |
+
"loss": 0.459,
|
| 450 |
+
"step": 315
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.2982292637465051,
|
| 454 |
+
"grad_norm": 1.034709523419619,
|
| 455 |
+
"learning_rate": 4.968944099378882e-05,
|
| 456 |
+
"loss": 0.4441,
|
| 457 |
+
"step": 320
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.30288909599254427,
|
| 461 |
+
"grad_norm": 0.759919110757548,
|
| 462 |
+
"learning_rate": 4.994822229892993e-05,
|
| 463 |
+
"loss": 0.4415,
|
| 464 |
+
"step": 325
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.30754892823858343,
|
| 468 |
+
"grad_norm": 0.6470711913841568,
|
| 469 |
+
"learning_rate": 4.986192613047981e-05,
|
| 470 |
+
"loss": 0.4519,
|
| 471 |
+
"step": 330
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.31220876048462254,
|
| 475 |
+
"grad_norm": 0.8153464642106912,
|
| 476 |
+
"learning_rate": 4.977562996202969e-05,
|
| 477 |
+
"loss": 0.4527,
|
| 478 |
+
"step": 335
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.3168685927306617,
|
| 482 |
+
"grad_norm": 0.4698984383111023,
|
| 483 |
+
"learning_rate": 4.968933379357957e-05,
|
| 484 |
+
"loss": 0.4532,
|
| 485 |
+
"step": 340
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.32152842497670087,
|
| 489 |
+
"grad_norm": 0.4756319068347418,
|
| 490 |
+
"learning_rate": 4.9603037625129445e-05,
|
| 491 |
+
"loss": 0.4479,
|
| 492 |
+
"step": 345
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.32618825722274,
|
| 496 |
+
"grad_norm": 0.35969300915800667,
|
| 497 |
+
"learning_rate": 4.951674145667933e-05,
|
| 498 |
+
"loss": 0.4613,
|
| 499 |
+
"step": 350
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.33084808946877914,
|
| 503 |
+
"grad_norm": 0.5175115868112082,
|
| 504 |
+
"learning_rate": 4.94304452882292e-05,
|
| 505 |
+
"loss": 0.4473,
|
| 506 |
+
"step": 355
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.33550792171481825,
|
| 510 |
+
"grad_norm": 0.46094013566363407,
|
| 511 |
+
"learning_rate": 4.934414911977908e-05,
|
| 512 |
+
"loss": 0.445,
|
| 513 |
+
"step": 360
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.3401677539608574,
|
| 517 |
+
"grad_norm": 0.4104764392290741,
|
| 518 |
+
"learning_rate": 4.9257852951328965e-05,
|
| 519 |
+
"loss": 0.4415,
|
| 520 |
+
"step": 365
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.3448275862068966,
|
| 524 |
+
"grad_norm": 0.40096213441032663,
|
| 525 |
+
"learning_rate": 4.917155678287884e-05,
|
| 526 |
+
"loss": 0.4546,
|
| 527 |
+
"step": 370
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.3494874184529357,
|
| 531 |
+
"grad_norm": 0.4645867033422015,
|
| 532 |
+
"learning_rate": 4.908526061442872e-05,
|
| 533 |
+
"loss": 0.4408,
|
| 534 |
+
"step": 375
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.35414725069897485,
|
| 538 |
+
"grad_norm": 0.4400737008116359,
|
| 539 |
+
"learning_rate": 4.89989644459786e-05,
|
| 540 |
+
"loss": 0.4557,
|
| 541 |
+
"step": 380
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.35880708294501396,
|
| 545 |
+
"grad_norm": 0.4260635316927096,
|
| 546 |
+
"learning_rate": 4.891266827752848e-05,
|
| 547 |
+
"loss": 0.4575,
|
| 548 |
+
"step": 385
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.3634669151910531,
|
| 552 |
+
"grad_norm": 0.5323727061907297,
|
| 553 |
+
"learning_rate": 4.882637210907836e-05,
|
| 554 |
+
"loss": 0.4417,
|
| 555 |
+
"step": 390
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.3681267474370923,
|
| 559 |
+
"grad_norm": 0.5836242210222355,
|
| 560 |
+
"learning_rate": 4.874007594062824e-05,
|
| 561 |
+
"loss": 0.4481,
|
| 562 |
+
"step": 395
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.3727865796831314,
|
| 566 |
+
"grad_norm": 0.4273563357499149,
|
| 567 |
+
"learning_rate": 4.865377977217811e-05,
|
| 568 |
+
"loss": 0.4327,
|
| 569 |
+
"step": 400
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.37744641192917056,
|
| 573 |
+
"grad_norm": 0.3953667888190435,
|
| 574 |
+
"learning_rate": 4.8567483603728e-05,
|
| 575 |
+
"loss": 0.4512,
|
| 576 |
+
"step": 405
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.3821062441752097,
|
| 580 |
+
"grad_norm": 0.41871105603942904,
|
| 581 |
+
"learning_rate": 4.8481187435277875e-05,
|
| 582 |
+
"loss": 0.4471,
|
| 583 |
+
"step": 410
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.38676607642124883,
|
| 587 |
+
"grad_norm": 0.5437922609735028,
|
| 588 |
+
"learning_rate": 4.839489126682776e-05,
|
| 589 |
+
"loss": 0.4338,
|
| 590 |
+
"step": 415
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.391425908667288,
|
| 594 |
+
"grad_norm": 0.5564237695130677,
|
| 595 |
+
"learning_rate": 4.830859509837763e-05,
|
| 596 |
+
"loss": 0.4521,
|
| 597 |
+
"step": 420
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.3960857409133271,
|
| 601 |
+
"grad_norm": 0.34206255911684263,
|
| 602 |
+
"learning_rate": 4.822229892992751e-05,
|
| 603 |
+
"loss": 0.4495,
|
| 604 |
+
"step": 425
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.40074557315936626,
|
| 608 |
+
"grad_norm": 0.4019378807561449,
|
| 609 |
+
"learning_rate": 4.8136002761477395e-05,
|
| 610 |
+
"loss": 0.4365,
|
| 611 |
+
"step": 430
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.40540540540540543,
|
| 615 |
+
"grad_norm": 0.5440015382583567,
|
| 616 |
+
"learning_rate": 4.804970659302727e-05,
|
| 617 |
+
"loss": 0.4499,
|
| 618 |
+
"step": 435
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.41006523765144454,
|
| 622 |
+
"grad_norm": 0.5537615079643711,
|
| 623 |
+
"learning_rate": 4.796341042457715e-05,
|
| 624 |
+
"loss": 0.4438,
|
| 625 |
+
"step": 440
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.4147250698974837,
|
| 629 |
+
"grad_norm": 0.586960808161654,
|
| 630 |
+
"learning_rate": 4.787711425612703e-05,
|
| 631 |
+
"loss": 0.4386,
|
| 632 |
+
"step": 445
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.4193849021435228,
|
| 636 |
+
"grad_norm": 0.5072343488418793,
|
| 637 |
+
"learning_rate": 4.779081808767691e-05,
|
| 638 |
+
"loss": 0.4292,
|
| 639 |
+
"step": 450
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.424044734389562,
|
| 643 |
+
"grad_norm": 0.48278977249280486,
|
| 644 |
+
"learning_rate": 4.770452191922679e-05,
|
| 645 |
+
"loss": 0.4362,
|
| 646 |
+
"step": 455
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.42870456663560114,
|
| 650 |
+
"grad_norm": 0.39818179591075503,
|
| 651 |
+
"learning_rate": 4.761822575077667e-05,
|
| 652 |
+
"loss": 0.4329,
|
| 653 |
+
"step": 460
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.43336439888164024,
|
| 657 |
+
"grad_norm": 0.48993775783018667,
|
| 658 |
+
"learning_rate": 4.753192958232654e-05,
|
| 659 |
+
"loss": 0.4299,
|
| 660 |
+
"step": 465
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.4380242311276794,
|
| 664 |
+
"grad_norm": 0.41171920657337485,
|
| 665 |
+
"learning_rate": 4.744563341387643e-05,
|
| 666 |
+
"loss": 0.4428,
|
| 667 |
+
"step": 470
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.4426840633737186,
|
| 671 |
+
"grad_norm": 0.4400559670696649,
|
| 672 |
+
"learning_rate": 4.7359337245426306e-05,
|
| 673 |
+
"loss": 0.432,
|
| 674 |
+
"step": 475
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.4473438956197577,
|
| 678 |
+
"grad_norm": 0.4686484619433322,
|
| 679 |
+
"learning_rate": 4.7273041076976184e-05,
|
| 680 |
+
"loss": 0.4441,
|
| 681 |
+
"step": 480
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.45200372786579684,
|
| 685 |
+
"grad_norm": 0.4455986109270811,
|
| 686 |
+
"learning_rate": 4.718674490852606e-05,
|
| 687 |
+
"loss": 0.4368,
|
| 688 |
+
"step": 485
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.45666356011183595,
|
| 692 |
+
"grad_norm": 0.4366809315888367,
|
| 693 |
+
"learning_rate": 4.710044874007594e-05,
|
| 694 |
+
"loss": 0.4312,
|
| 695 |
+
"step": 490
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.4613233923578751,
|
| 699 |
+
"grad_norm": 0.4587131719176713,
|
| 700 |
+
"learning_rate": 4.7014152571625826e-05,
|
| 701 |
+
"loss": 0.4369,
|
| 702 |
+
"step": 495
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.4659832246039143,
|
| 706 |
+
"grad_norm": 0.5269402211397143,
|
| 707 |
+
"learning_rate": 4.6927856403175704e-05,
|
| 708 |
+
"loss": 0.44,
|
| 709 |
+
"step": 500
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.4706430568499534,
|
| 713 |
+
"grad_norm": 0.387320399512531,
|
| 714 |
+
"learning_rate": 4.684156023472558e-05,
|
| 715 |
+
"loss": 0.4266,
|
| 716 |
+
"step": 505
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.47530288909599255,
|
| 720 |
+
"grad_norm": 0.4446811703899567,
|
| 721 |
+
"learning_rate": 4.675526406627546e-05,
|
| 722 |
+
"loss": 0.435,
|
| 723 |
+
"step": 510
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.47996272134203166,
|
| 727 |
+
"grad_norm": 0.6228000644001809,
|
| 728 |
+
"learning_rate": 4.666896789782534e-05,
|
| 729 |
+
"loss": 0.433,
|
| 730 |
+
"step": 515
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.4846225535880708,
|
| 734 |
+
"grad_norm": 0.5372584652001571,
|
| 735 |
+
"learning_rate": 4.658267172937522e-05,
|
| 736 |
+
"loss": 0.4368,
|
| 737 |
+
"step": 520
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.48928238583411,
|
| 741 |
+
"grad_norm": 0.4279339582606534,
|
| 742 |
+
"learning_rate": 4.64963755609251e-05,
|
| 743 |
+
"loss": 0.4358,
|
| 744 |
+
"step": 525
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.4939422180801491,
|
| 748 |
+
"grad_norm": 0.5212302132415493,
|
| 749 |
+
"learning_rate": 4.641007939247497e-05,
|
| 750 |
+
"loss": 0.4327,
|
| 751 |
+
"step": 530
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.49860205032618826,
|
| 755 |
+
"grad_norm": 0.38993326302525777,
|
| 756 |
+
"learning_rate": 4.632378322402486e-05,
|
| 757 |
+
"loss": 0.4329,
|
| 758 |
+
"step": 535
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.5032618825722274,
|
| 762 |
+
"grad_norm": 0.3927986683558084,
|
| 763 |
+
"learning_rate": 4.6237487055574736e-05,
|
| 764 |
+
"loss": 0.4228,
|
| 765 |
+
"step": 540
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.5079217148182665,
|
| 769 |
+
"grad_norm": 0.48245624377171165,
|
| 770 |
+
"learning_rate": 4.6151190887124615e-05,
|
| 771 |
+
"loss": 0.4292,
|
| 772 |
+
"step": 545
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.5125815470643057,
|
| 776 |
+
"grad_norm": 0.4417482867433448,
|
| 777 |
+
"learning_rate": 4.606489471867449e-05,
|
| 778 |
+
"loss": 0.4293,
|
| 779 |
+
"step": 550
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.5172413793103449,
|
| 783 |
+
"grad_norm": 0.34875514025764925,
|
| 784 |
+
"learning_rate": 4.597859855022437e-05,
|
| 785 |
+
"loss": 0.4236,
|
| 786 |
+
"step": 555
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.5219012115563839,
|
| 790 |
+
"grad_norm": 0.4108051872320117,
|
| 791 |
+
"learning_rate": 4.589230238177425e-05,
|
| 792 |
+
"loss": 0.4445,
|
| 793 |
+
"step": 560
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.5265610438024231,
|
| 797 |
+
"grad_norm": 0.44712854316017836,
|
| 798 |
+
"learning_rate": 4.5806006213324134e-05,
|
| 799 |
+
"loss": 0.422,
|
| 800 |
+
"step": 565
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.5312208760484622,
|
| 804 |
+
"grad_norm": 0.5074461667448572,
|
| 805 |
+
"learning_rate": 4.5719710044874006e-05,
|
| 806 |
+
"loss": 0.4218,
|
| 807 |
+
"step": 570
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.5358807082945014,
|
| 811 |
+
"grad_norm": 0.40474852553762236,
|
| 812 |
+
"learning_rate": 4.563341387642389e-05,
|
| 813 |
+
"loss": 0.428,
|
| 814 |
+
"step": 575
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.5405405405405406,
|
| 818 |
+
"grad_norm": 0.35760028403552246,
|
| 819 |
+
"learning_rate": 4.554711770797377e-05,
|
| 820 |
+
"loss": 0.4281,
|
| 821 |
+
"step": 580
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.5452003727865797,
|
| 825 |
+
"grad_norm": 0.43397068927843285,
|
| 826 |
+
"learning_rate": 4.546082153952365e-05,
|
| 827 |
+
"loss": 0.4251,
|
| 828 |
+
"step": 585
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.5498602050326188,
|
| 832 |
+
"grad_norm": 0.39007262792966735,
|
| 833 |
+
"learning_rate": 4.5374525371073526e-05,
|
| 834 |
+
"loss": 0.4213,
|
| 835 |
+
"step": 590
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.554520037278658,
|
| 839 |
+
"grad_norm": 0.36154265093260674,
|
| 840 |
+
"learning_rate": 4.5288229202623404e-05,
|
| 841 |
+
"loss": 0.4236,
|
| 842 |
+
"step": 595
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.5591798695246971,
|
| 846 |
+
"grad_norm": 0.40445512036092346,
|
| 847 |
+
"learning_rate": 4.520193303417328e-05,
|
| 848 |
+
"loss": 0.4237,
|
| 849 |
+
"step": 600
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.5638397017707363,
|
| 853 |
+
"grad_norm": 0.3575679279572506,
|
| 854 |
+
"learning_rate": 4.511563686572317e-05,
|
| 855 |
+
"loss": 0.4226,
|
| 856 |
+
"step": 605
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.5684995340167754,
|
| 860 |
+
"grad_norm": 0.42859866287384585,
|
| 861 |
+
"learning_rate": 4.5029340697273045e-05,
|
| 862 |
+
"loss": 0.4337,
|
| 863 |
+
"step": 610
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.5731593662628145,
|
| 867 |
+
"grad_norm": 0.3398059428883966,
|
| 868 |
+
"learning_rate": 4.4943044528822923e-05,
|
| 869 |
+
"loss": 0.4202,
|
| 870 |
+
"step": 615
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.5778191985088537,
|
| 874 |
+
"grad_norm": 0.4329692306704453,
|
| 875 |
+
"learning_rate": 4.48567483603728e-05,
|
| 876 |
+
"loss": 0.4172,
|
| 877 |
+
"step": 620
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.5824790307548928,
|
| 881 |
+
"grad_norm": 0.3697726336264495,
|
| 882 |
+
"learning_rate": 4.477045219192268e-05,
|
| 883 |
+
"loss": 0.439,
|
| 884 |
+
"step": 625
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.587138863000932,
|
| 888 |
+
"grad_norm": 0.36623031936246386,
|
| 889 |
+
"learning_rate": 4.4684156023472565e-05,
|
| 890 |
+
"loss": 0.4295,
|
| 891 |
+
"step": 630
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.5917986952469712,
|
| 895 |
+
"grad_norm": 0.474742638876247,
|
| 896 |
+
"learning_rate": 4.4597859855022436e-05,
|
| 897 |
+
"loss": 0.4341,
|
| 898 |
+
"step": 635
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.5964585274930102,
|
| 902 |
+
"grad_norm": 0.48429407467593777,
|
| 903 |
+
"learning_rate": 4.4511563686572315e-05,
|
| 904 |
+
"loss": 0.4248,
|
| 905 |
+
"step": 640
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.6011183597390494,
|
| 909 |
+
"grad_norm": 0.42926923766107844,
|
| 910 |
+
"learning_rate": 4.44252675181222e-05,
|
| 911 |
+
"loss": 0.4246,
|
| 912 |
+
"step": 645
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.6057781919850885,
|
| 916 |
+
"grad_norm": 0.41759175987652447,
|
| 917 |
+
"learning_rate": 4.433897134967208e-05,
|
| 918 |
+
"loss": 0.4333,
|
| 919 |
+
"step": 650
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.6104380242311277,
|
| 923 |
+
"grad_norm": 0.40591710297089845,
|
| 924 |
+
"learning_rate": 4.4252675181221956e-05,
|
| 925 |
+
"loss": 0.4308,
|
| 926 |
+
"step": 655
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.6150978564771669,
|
| 930 |
+
"grad_norm": 0.34151741261761837,
|
| 931 |
+
"learning_rate": 4.4166379012771834e-05,
|
| 932 |
+
"loss": 0.4127,
|
| 933 |
+
"step": 660
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.6197576887232059,
|
| 937 |
+
"grad_norm": 0.4739000530318965,
|
| 938 |
+
"learning_rate": 4.408008284432171e-05,
|
| 939 |
+
"loss": 0.4134,
|
| 940 |
+
"step": 665
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.6244175209692451,
|
| 944 |
+
"grad_norm": 0.40594442187572644,
|
| 945 |
+
"learning_rate": 4.39937866758716e-05,
|
| 946 |
+
"loss": 0.4119,
|
| 947 |
+
"step": 670
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.6290773532152842,
|
| 951 |
+
"grad_norm": 0.38741906022032196,
|
| 952 |
+
"learning_rate": 4.3907490507421476e-05,
|
| 953 |
+
"loss": 0.4205,
|
| 954 |
+
"step": 675
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.6337371854613234,
|
| 958 |
+
"grad_norm": 0.40827486654087697,
|
| 959 |
+
"learning_rate": 4.382119433897135e-05,
|
| 960 |
+
"loss": 0.4235,
|
| 961 |
+
"step": 680
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.6383970177073626,
|
| 965 |
+
"grad_norm": 0.4472633880572486,
|
| 966 |
+
"learning_rate": 4.373489817052123e-05,
|
| 967 |
+
"loss": 0.4332,
|
| 968 |
+
"step": 685
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.6430568499534017,
|
| 972 |
+
"grad_norm": 0.4294679057605266,
|
| 973 |
+
"learning_rate": 4.364860200207111e-05,
|
| 974 |
+
"loss": 0.4153,
|
| 975 |
+
"step": 690
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.6477166821994408,
|
| 979 |
+
"grad_norm": 0.40635265146514193,
|
| 980 |
+
"learning_rate": 4.356230583362099e-05,
|
| 981 |
+
"loss": 0.4207,
|
| 982 |
+
"step": 695
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.65237651444548,
|
| 986 |
+
"grad_norm": 0.3677110047703502,
|
| 987 |
+
"learning_rate": 4.347600966517087e-05,
|
| 988 |
+
"loss": 0.429,
|
| 989 |
+
"step": 700
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.6570363466915191,
|
| 993 |
+
"grad_norm": 0.39912181862304363,
|
| 994 |
+
"learning_rate": 4.3389713496720745e-05,
|
| 995 |
+
"loss": 0.4225,
|
| 996 |
+
"step": 705
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.6616961789375583,
|
| 1000 |
+
"grad_norm": 0.4706777419313193,
|
| 1001 |
+
"learning_rate": 4.330341732827063e-05,
|
| 1002 |
+
"loss": 0.4231,
|
| 1003 |
+
"step": 710
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.6663560111835974,
|
| 1007 |
+
"grad_norm": 0.3960054145843989,
|
| 1008 |
+
"learning_rate": 4.321712115982051e-05,
|
| 1009 |
+
"loss": 0.4115,
|
| 1010 |
+
"step": 715
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.6710158434296365,
|
| 1014 |
+
"grad_norm": 0.3796810889210068,
|
| 1015 |
+
"learning_rate": 4.3130824991370387e-05,
|
| 1016 |
+
"loss": 0.4219,
|
| 1017 |
+
"step": 720
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.6756756756756757,
|
| 1021 |
+
"grad_norm": 0.3231682922426093,
|
| 1022 |
+
"learning_rate": 4.3044528822920265e-05,
|
| 1023 |
+
"loss": 0.4207,
|
| 1024 |
+
"step": 725
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.6803355079217148,
|
| 1028 |
+
"grad_norm": 0.4338919098644665,
|
| 1029 |
+
"learning_rate": 4.295823265447014e-05,
|
| 1030 |
+
"loss": 0.4156,
|
| 1031 |
+
"step": 730
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.684995340167754,
|
| 1035 |
+
"grad_norm": 0.3769886966857475,
|
| 1036 |
+
"learning_rate": 4.287193648602002e-05,
|
| 1037 |
+
"loss": 0.4195,
|
| 1038 |
+
"step": 735
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.6896551724137931,
|
| 1042 |
+
"grad_norm": 0.3380840539678925,
|
| 1043 |
+
"learning_rate": 4.27856403175699e-05,
|
| 1044 |
+
"loss": 0.413,
|
| 1045 |
+
"step": 740
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.6943150046598322,
|
| 1049 |
+
"grad_norm": 0.36717339806709604,
|
| 1050 |
+
"learning_rate": 4.269934414911978e-05,
|
| 1051 |
+
"loss": 0.4089,
|
| 1052 |
+
"step": 745
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.6989748369058714,
|
| 1056 |
+
"grad_norm": 0.4168652698432254,
|
| 1057 |
+
"learning_rate": 4.261304798066966e-05,
|
| 1058 |
+
"loss": 0.4136,
|
| 1059 |
+
"step": 750
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.7036346691519105,
|
| 1063 |
+
"grad_norm": 0.3690477723388078,
|
| 1064 |
+
"learning_rate": 4.252675181221954e-05,
|
| 1065 |
+
"loss": 0.416,
|
| 1066 |
+
"step": 755
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.7082945013979497,
|
| 1070 |
+
"grad_norm": 0.4242455380044557,
|
| 1071 |
+
"learning_rate": 4.244045564376942e-05,
|
| 1072 |
+
"loss": 0.4191,
|
| 1073 |
+
"step": 760
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.7129543336439889,
|
| 1077 |
+
"grad_norm": 0.3735978801523571,
|
| 1078 |
+
"learning_rate": 4.23541594753193e-05,
|
| 1079 |
+
"loss": 0.4031,
|
| 1080 |
+
"step": 765
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.7176141658900279,
|
| 1084 |
+
"grad_norm": 0.3541170842431973,
|
| 1085 |
+
"learning_rate": 4.2267863306869176e-05,
|
| 1086 |
+
"loss": 0.4125,
|
| 1087 |
+
"step": 770
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.7222739981360671,
|
| 1091 |
+
"grad_norm": 0.3904517316938196,
|
| 1092 |
+
"learning_rate": 4.2181567138419054e-05,
|
| 1093 |
+
"loss": 0.425,
|
| 1094 |
+
"step": 775
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.7269338303821062,
|
| 1098 |
+
"grad_norm": 0.3553979878523653,
|
| 1099 |
+
"learning_rate": 4.209527096996894e-05,
|
| 1100 |
+
"loss": 0.4095,
|
| 1101 |
+
"step": 780
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.7315936626281454,
|
| 1105 |
+
"grad_norm": 0.3993958111614743,
|
| 1106 |
+
"learning_rate": 4.200897480151881e-05,
|
| 1107 |
+
"loss": 0.4168,
|
| 1108 |
+
"step": 785
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.7362534948741846,
|
| 1112 |
+
"grad_norm": 0.4854725144908592,
|
| 1113 |
+
"learning_rate": 4.1922678633068695e-05,
|
| 1114 |
+
"loss": 0.4201,
|
| 1115 |
+
"step": 790
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.7409133271202236,
|
| 1119 |
+
"grad_norm": 0.4093466282869362,
|
| 1120 |
+
"learning_rate": 4.1836382464618573e-05,
|
| 1121 |
+
"loss": 0.4144,
|
| 1122 |
+
"step": 795
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.7455731593662628,
|
| 1126 |
+
"grad_norm": 0.3802224792673468,
|
| 1127 |
+
"learning_rate": 4.175008629616845e-05,
|
| 1128 |
+
"loss": 0.4126,
|
| 1129 |
+
"step": 800
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 0.750232991612302,
|
| 1133 |
+
"grad_norm": 0.36566042296095735,
|
| 1134 |
+
"learning_rate": 4.166379012771833e-05,
|
| 1135 |
+
"loss": 0.4124,
|
| 1136 |
+
"step": 805
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.7548928238583411,
|
| 1140 |
+
"grad_norm": 0.33821479986680525,
|
| 1141 |
+
"learning_rate": 4.157749395926821e-05,
|
| 1142 |
+
"loss": 0.4307,
|
| 1143 |
+
"step": 810
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.7595526561043803,
|
| 1147 |
+
"grad_norm": 0.3717989938649144,
|
| 1148 |
+
"learning_rate": 4.1491197790818086e-05,
|
| 1149 |
+
"loss": 0.405,
|
| 1150 |
+
"step": 815
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.7642124883504194,
|
| 1154 |
+
"grad_norm": 0.5365115867656194,
|
| 1155 |
+
"learning_rate": 4.140490162236797e-05,
|
| 1156 |
+
"loss": 0.4203,
|
| 1157 |
+
"step": 820
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.7688723205964585,
|
| 1161 |
+
"grad_norm": 0.40471466095870456,
|
| 1162 |
+
"learning_rate": 4.131860545391785e-05,
|
| 1163 |
+
"loss": 0.4124,
|
| 1164 |
+
"step": 825
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.7735321528424977,
|
| 1168 |
+
"grad_norm": 0.38714529094413536,
|
| 1169 |
+
"learning_rate": 4.123230928546773e-05,
|
| 1170 |
+
"loss": 0.4073,
|
| 1171 |
+
"step": 830
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.7781919850885368,
|
| 1175 |
+
"grad_norm": 0.3949031763600824,
|
| 1176 |
+
"learning_rate": 4.1146013117017606e-05,
|
| 1177 |
+
"loss": 0.4143,
|
| 1178 |
+
"step": 835
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.782851817334576,
|
| 1182 |
+
"grad_norm": 0.4352023815662388,
|
| 1183 |
+
"learning_rate": 4.1059716948567484e-05,
|
| 1184 |
+
"loss": 0.4174,
|
| 1185 |
+
"step": 840
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.7875116495806151,
|
| 1189 |
+
"grad_norm": 0.4358406385453878,
|
| 1190 |
+
"learning_rate": 4.097342078011737e-05,
|
| 1191 |
+
"loss": 0.4254,
|
| 1192 |
+
"step": 845
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.7921714818266542,
|
| 1196 |
+
"grad_norm": 0.38366190649635135,
|
| 1197 |
+
"learning_rate": 4.088712461166724e-05,
|
| 1198 |
+
"loss": 0.4151,
|
| 1199 |
+
"step": 850
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.7968313140726934,
|
| 1203 |
+
"grad_norm": 0.5018848204235326,
|
| 1204 |
+
"learning_rate": 4.080082844321712e-05,
|
| 1205 |
+
"loss": 0.4171,
|
| 1206 |
+
"step": 855
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.8014911463187325,
|
| 1210 |
+
"grad_norm": 0.3758022403546901,
|
| 1211 |
+
"learning_rate": 4.0714532274767004e-05,
|
| 1212 |
+
"loss": 0.4241,
|
| 1213 |
+
"step": 860
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 0.8061509785647717,
|
| 1217 |
+
"grad_norm": 0.3562876865702164,
|
| 1218 |
+
"learning_rate": 4.062823610631688e-05,
|
| 1219 |
+
"loss": 0.405,
|
| 1220 |
+
"step": 865
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.8108108108108109,
|
| 1224 |
+
"grad_norm": 0.32964459523802225,
|
| 1225 |
+
"learning_rate": 4.054193993786676e-05,
|
| 1226 |
+
"loss": 0.4195,
|
| 1227 |
+
"step": 870
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.8154706430568499,
|
| 1231 |
+
"grad_norm": 0.3902217678069233,
|
| 1232 |
+
"learning_rate": 4.045564376941664e-05,
|
| 1233 |
+
"loss": 0.415,
|
| 1234 |
+
"step": 875
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.8201304753028891,
|
| 1238 |
+
"grad_norm": 0.6740352106087266,
|
| 1239 |
+
"learning_rate": 4.036934760096652e-05,
|
| 1240 |
+
"loss": 0.4065,
|
| 1241 |
+
"step": 880
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 0.8247903075489282,
|
| 1245 |
+
"grad_norm": 0.433837350976653,
|
| 1246 |
+
"learning_rate": 4.02830514325164e-05,
|
| 1247 |
+
"loss": 0.4206,
|
| 1248 |
+
"step": 885
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.8294501397949674,
|
| 1252 |
+
"grad_norm": 0.44183852945895624,
|
| 1253 |
+
"learning_rate": 4.019675526406628e-05,
|
| 1254 |
+
"loss": 0.4072,
|
| 1255 |
+
"step": 890
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 0.8341099720410066,
|
| 1259 |
+
"grad_norm": 0.34981947402981967,
|
| 1260 |
+
"learning_rate": 4.011045909561615e-05,
|
| 1261 |
+
"loss": 0.4267,
|
| 1262 |
+
"step": 895
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.8387698042870456,
|
| 1266 |
+
"grad_norm": 0.3704822813418764,
|
| 1267 |
+
"learning_rate": 4.0024162927166037e-05,
|
| 1268 |
+
"loss": 0.4093,
|
| 1269 |
+
"step": 900
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.8434296365330848,
|
| 1273 |
+
"grad_norm": 0.3440227445259439,
|
| 1274 |
+
"learning_rate": 3.9937866758715915e-05,
|
| 1275 |
+
"loss": 0.4109,
|
| 1276 |
+
"step": 905
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 0.848089468779124,
|
| 1280 |
+
"grad_norm": 0.46842513834829896,
|
| 1281 |
+
"learning_rate": 3.98515705902658e-05,
|
| 1282 |
+
"loss": 0.4169,
|
| 1283 |
+
"step": 910
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.8527493010251631,
|
| 1287 |
+
"grad_norm": 0.5632219425437093,
|
| 1288 |
+
"learning_rate": 3.976527442181567e-05,
|
| 1289 |
+
"loss": 0.4096,
|
| 1290 |
+
"step": 915
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.8574091332712023,
|
| 1294 |
+
"grad_norm": 0.4099216183303217,
|
| 1295 |
+
"learning_rate": 3.967897825336555e-05,
|
| 1296 |
+
"loss": 0.4162,
|
| 1297 |
+
"step": 920
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 0.8620689655172413,
|
| 1301 |
+
"grad_norm": 0.3475937062948154,
|
| 1302 |
+
"learning_rate": 3.9592682084915434e-05,
|
| 1303 |
+
"loss": 0.403,
|
| 1304 |
+
"step": 925
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 0.8667287977632805,
|
| 1308 |
+
"grad_norm": 0.4832320578936911,
|
| 1309 |
+
"learning_rate": 3.950638591646531e-05,
|
| 1310 |
+
"loss": 0.4025,
|
| 1311 |
+
"step": 930
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.8713886300093197,
|
| 1315 |
+
"grad_norm": 0.361390732321457,
|
| 1316 |
+
"learning_rate": 3.942008974801519e-05,
|
| 1317 |
+
"loss": 0.414,
|
| 1318 |
+
"step": 935
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 0.8760484622553588,
|
| 1322 |
+
"grad_norm": 0.2938396873991374,
|
| 1323 |
+
"learning_rate": 3.933379357956507e-05,
|
| 1324 |
+
"loss": 0.4096,
|
| 1325 |
+
"step": 940
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 0.880708294501398,
|
| 1329 |
+
"grad_norm": 0.4195411837550818,
|
| 1330 |
+
"learning_rate": 3.924749741111495e-05,
|
| 1331 |
+
"loss": 0.4119,
|
| 1332 |
+
"step": 945
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.8853681267474371,
|
| 1336 |
+
"grad_norm": 0.48658637807442856,
|
| 1337 |
+
"learning_rate": 3.916120124266483e-05,
|
| 1338 |
+
"loss": 0.4197,
|
| 1339 |
+
"step": 950
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 0.8900279589934762,
|
| 1343 |
+
"grad_norm": 0.4260894598328252,
|
| 1344 |
+
"learning_rate": 3.9074905074214704e-05,
|
| 1345 |
+
"loss": 0.4187,
|
| 1346 |
+
"step": 955
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.8946877912395154,
|
| 1350 |
+
"grad_norm": 0.34451778618434714,
|
| 1351 |
+
"learning_rate": 3.898860890576458e-05,
|
| 1352 |
+
"loss": 0.4138,
|
| 1353 |
+
"step": 960
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.8993476234855545,
|
| 1357 |
+
"grad_norm": 0.4365094696793227,
|
| 1358 |
+
"learning_rate": 3.890231273731447e-05,
|
| 1359 |
+
"loss": 0.4055,
|
| 1360 |
+
"step": 965
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.9040074557315937,
|
| 1364 |
+
"grad_norm": 0.3248156521748473,
|
| 1365 |
+
"learning_rate": 3.8816016568864345e-05,
|
| 1366 |
+
"loss": 0.4033,
|
| 1367 |
+
"step": 970
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.9086672879776329,
|
| 1371 |
+
"grad_norm": 0.32381986617162706,
|
| 1372 |
+
"learning_rate": 3.8729720400414224e-05,
|
| 1373 |
+
"loss": 0.4222,
|
| 1374 |
+
"step": 975
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.9133271202236719,
|
| 1378 |
+
"grad_norm": 0.400448857756024,
|
| 1379 |
+
"learning_rate": 3.86434242319641e-05,
|
| 1380 |
+
"loss": 0.4093,
|
| 1381 |
+
"step": 980
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.9179869524697111,
|
| 1385 |
+
"grad_norm": 0.5091133203813641,
|
| 1386 |
+
"learning_rate": 3.855712806351398e-05,
|
| 1387 |
+
"loss": 0.4124,
|
| 1388 |
+
"step": 985
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.9226467847157502,
|
| 1392 |
+
"grad_norm": 0.43202295251303324,
|
| 1393 |
+
"learning_rate": 3.8470831895063865e-05,
|
| 1394 |
+
"loss": 0.4088,
|
| 1395 |
+
"step": 990
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.9273066169617894,
|
| 1399 |
+
"grad_norm": 0.364710789588561,
|
| 1400 |
+
"learning_rate": 3.838453572661374e-05,
|
| 1401 |
+
"loss": 0.4046,
|
| 1402 |
+
"step": 995
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.9319664492078286,
|
| 1406 |
+
"grad_norm": 0.4716388737566944,
|
| 1407 |
+
"learning_rate": 3.8298239558163615e-05,
|
| 1408 |
+
"loss": 0.4075,
|
| 1409 |
+
"step": 1000
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 0.9366262814538676,
|
| 1413 |
+
"grad_norm": 0.6143023930914768,
|
| 1414 |
+
"learning_rate": 3.82119433897135e-05,
|
| 1415 |
+
"loss": 0.4151,
|
| 1416 |
+
"step": 1005
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 0.9412861136999068,
|
| 1420 |
+
"grad_norm": 0.4045209641384314,
|
| 1421 |
+
"learning_rate": 3.812564722126338e-05,
|
| 1422 |
+
"loss": 0.4061,
|
| 1423 |
+
"step": 1010
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 0.9459459459459459,
|
| 1427 |
+
"grad_norm": 0.4374289349183326,
|
| 1428 |
+
"learning_rate": 3.8039351052813256e-05,
|
| 1429 |
+
"loss": 0.4149,
|
| 1430 |
+
"step": 1015
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 0.9506057781919851,
|
| 1434 |
+
"grad_norm": 0.4186126910891237,
|
| 1435 |
+
"learning_rate": 3.7953054884363134e-05,
|
| 1436 |
+
"loss": 0.4082,
|
| 1437 |
+
"step": 1020
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.9552656104380243,
|
| 1441 |
+
"grad_norm": 0.3724784755826059,
|
| 1442 |
+
"learning_rate": 3.786675871591301e-05,
|
| 1443 |
+
"loss": 0.4116,
|
| 1444 |
+
"step": 1025
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 0.9599254426840633,
|
| 1448 |
+
"grad_norm": 0.3162214191511966,
|
| 1449 |
+
"learning_rate": 3.77804625474629e-05,
|
| 1450 |
+
"loss": 0.4165,
|
| 1451 |
+
"step": 1030
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 0.9645852749301025,
|
| 1455 |
+
"grad_norm": 0.44560720068567894,
|
| 1456 |
+
"learning_rate": 3.7694166379012776e-05,
|
| 1457 |
+
"loss": 0.4086,
|
| 1458 |
+
"step": 1035
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.9692451071761417,
|
| 1462 |
+
"grad_norm": 0.3715493465051349,
|
| 1463 |
+
"learning_rate": 3.7607870210562654e-05,
|
| 1464 |
+
"loss": 0.406,
|
| 1465 |
+
"step": 1040
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 0.9739049394221808,
|
| 1469 |
+
"grad_norm": 0.2864953938663117,
|
| 1470 |
+
"learning_rate": 3.752157404211253e-05,
|
| 1471 |
+
"loss": 0.3984,
|
| 1472 |
+
"step": 1045
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 0.97856477166822,
|
| 1476 |
+
"grad_norm": 0.4430521911068819,
|
| 1477 |
+
"learning_rate": 3.743527787366241e-05,
|
| 1478 |
+
"loss": 0.428,
|
| 1479 |
+
"step": 1050
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.983224603914259,
|
| 1483 |
+
"grad_norm": 0.39380676782546514,
|
| 1484 |
+
"learning_rate": 3.734898170521229e-05,
|
| 1485 |
+
"loss": 0.4058,
|
| 1486 |
+
"step": 1055
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 0.9878844361602982,
|
| 1490 |
+
"grad_norm": 0.45421105453517185,
|
| 1491 |
+
"learning_rate": 3.7262685536762174e-05,
|
| 1492 |
+
"loss": 0.4048,
|
| 1493 |
+
"step": 1060
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 0.9925442684063374,
|
| 1497 |
+
"grad_norm": 0.3188847720393995,
|
| 1498 |
+
"learning_rate": 3.7176389368312045e-05,
|
| 1499 |
+
"loss": 0.4088,
|
| 1500 |
+
"step": 1065
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 0.9972041006523765,
|
| 1504 |
+
"grad_norm": 0.3979525304245011,
|
| 1505 |
+
"learning_rate": 3.709009319986193e-05,
|
| 1506 |
+
"loss": 0.409,
|
| 1507 |
+
"step": 1070
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 1.0018639328984156,
|
| 1511 |
+
"grad_norm": 0.364266540801231,
|
| 1512 |
+
"learning_rate": 3.700379703141181e-05,
|
| 1513 |
+
"loss": 0.3739,
|
| 1514 |
+
"step": 1075
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 1.0065237651444547,
|
| 1518 |
+
"grad_norm": 0.30445308416956596,
|
| 1519 |
+
"learning_rate": 3.6917500862961687e-05,
|
| 1520 |
+
"loss": 0.3498,
|
| 1521 |
+
"step": 1080
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 1.011183597390494,
|
| 1525 |
+
"grad_norm": 0.4080914841436169,
|
| 1526 |
+
"learning_rate": 3.6831204694511565e-05,
|
| 1527 |
+
"loss": 0.3564,
|
| 1528 |
+
"step": 1085
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 1.015843429636533,
|
| 1532 |
+
"grad_norm": 0.3649554671829125,
|
| 1533 |
+
"learning_rate": 3.674490852606144e-05,
|
| 1534 |
+
"loss": 0.3637,
|
| 1535 |
+
"step": 1090
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 1.0205032618825722,
|
| 1539 |
+
"grad_norm": 0.3163559100974115,
|
| 1540 |
+
"learning_rate": 3.665861235761132e-05,
|
| 1541 |
+
"loss": 0.349,
|
| 1542 |
+
"step": 1095
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 1.0251630941286114,
|
| 1546 |
+
"grad_norm": 0.36263837002354715,
|
| 1547 |
+
"learning_rate": 3.6572316189161206e-05,
|
| 1548 |
+
"loss": 0.3403,
|
| 1549 |
+
"step": 1100
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 1.0298229263746506,
|
| 1553 |
+
"grad_norm": 0.3092678358686789,
|
| 1554 |
+
"learning_rate": 3.6486020020711085e-05,
|
| 1555 |
+
"loss": 0.3465,
|
| 1556 |
+
"step": 1105
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 1.0344827586206897,
|
| 1560 |
+
"grad_norm": 0.3141892800399063,
|
| 1561 |
+
"learning_rate": 3.639972385226096e-05,
|
| 1562 |
+
"loss": 0.347,
|
| 1563 |
+
"step": 1110
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 1.0391425908667289,
|
| 1567 |
+
"grad_norm": 0.31295163640755363,
|
| 1568 |
+
"learning_rate": 3.631342768381084e-05,
|
| 1569 |
+
"loss": 0.3471,
|
| 1570 |
+
"step": 1115
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 1.0438024231127678,
|
| 1574 |
+
"grad_norm": 0.3401750953887306,
|
| 1575 |
+
"learning_rate": 3.622713151536072e-05,
|
| 1576 |
+
"loss": 0.3473,
|
| 1577 |
+
"step": 1120
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 1.048462255358807,
|
| 1581 |
+
"grad_norm": 0.31195615894221534,
|
| 1582 |
+
"learning_rate": 3.6140835346910604e-05,
|
| 1583 |
+
"loss": 0.3507,
|
| 1584 |
+
"step": 1125
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 1.0531220876048462,
|
| 1588 |
+
"grad_norm": 0.32979807481995643,
|
| 1589 |
+
"learning_rate": 3.6054539178460476e-05,
|
| 1590 |
+
"loss": 0.347,
|
| 1591 |
+
"step": 1130
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 1.0577819198508853,
|
| 1595 |
+
"grad_norm": 0.3759497094197671,
|
| 1596 |
+
"learning_rate": 3.5968243010010354e-05,
|
| 1597 |
+
"loss": 0.3635,
|
| 1598 |
+
"step": 1135
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 1.0624417520969245,
|
| 1602 |
+
"grad_norm": 0.3276972337838372,
|
| 1603 |
+
"learning_rate": 3.588194684156024e-05,
|
| 1604 |
+
"loss": 0.3546,
|
| 1605 |
+
"step": 1140
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 1.0671015843429636,
|
| 1609 |
+
"grad_norm": 0.3248203280892395,
|
| 1610 |
+
"learning_rate": 3.579565067311012e-05,
|
| 1611 |
+
"loss": 0.3461,
|
| 1612 |
+
"step": 1145
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 1.0717614165890028,
|
| 1616 |
+
"grad_norm": 0.3049982165023373,
|
| 1617 |
+
"learning_rate": 3.5709354504659995e-05,
|
| 1618 |
+
"loss": 0.3425,
|
| 1619 |
+
"step": 1150
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"epoch": 1.076421248835042,
|
| 1623 |
+
"grad_norm": 0.3359497674452099,
|
| 1624 |
+
"learning_rate": 3.5623058336209874e-05,
|
| 1625 |
+
"loss": 0.3535,
|
| 1626 |
+
"step": 1155
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 1.0810810810810811,
|
| 1630 |
+
"grad_norm": 0.3158582105691738,
|
| 1631 |
+
"learning_rate": 3.553676216775975e-05,
|
| 1632 |
+
"loss": 0.3448,
|
| 1633 |
+
"step": 1160
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"epoch": 1.0857409133271203,
|
| 1637 |
+
"grad_norm": 0.29574757335640145,
|
| 1638 |
+
"learning_rate": 3.545046599930964e-05,
|
| 1639 |
+
"loss": 0.3565,
|
| 1640 |
+
"step": 1165
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 1.0904007455731595,
|
| 1644 |
+
"grad_norm": 0.31108264753865356,
|
| 1645 |
+
"learning_rate": 3.536416983085951e-05,
|
| 1646 |
+
"loss": 0.3583,
|
| 1647 |
+
"step": 1170
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 1.0950605778191984,
|
| 1651 |
+
"grad_norm": 0.36037209266568915,
|
| 1652 |
+
"learning_rate": 3.5277873662409386e-05,
|
| 1653 |
+
"loss": 0.3448,
|
| 1654 |
+
"step": 1175
|
| 1655 |
+
},
|
| 1656 |
+
{
|
| 1657 |
+
"epoch": 1.0997204100652376,
|
| 1658 |
+
"grad_norm": 0.3618383231487912,
|
| 1659 |
+
"learning_rate": 3.519157749395927e-05,
|
| 1660 |
+
"loss": 0.3507,
|
| 1661 |
+
"step": 1180
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 1.1043802423112767,
|
| 1665 |
+
"grad_norm": 0.4175780783750628,
|
| 1666 |
+
"learning_rate": 3.510528132550915e-05,
|
| 1667 |
+
"loss": 0.3479,
|
| 1668 |
+
"step": 1185
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 1.109040074557316,
|
| 1672 |
+
"grad_norm": 0.3599957546238691,
|
| 1673 |
+
"learning_rate": 3.501898515705903e-05,
|
| 1674 |
+
"loss": 0.3503,
|
| 1675 |
+
"step": 1190
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"epoch": 1.113699906803355,
|
| 1679 |
+
"grad_norm": 0.3501599765642264,
|
| 1680 |
+
"learning_rate": 3.4932688988608906e-05,
|
| 1681 |
+
"loss": 0.3612,
|
| 1682 |
+
"step": 1195
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 1.1183597390493942,
|
| 1686 |
+
"grad_norm": 0.5599389993107197,
|
| 1687 |
+
"learning_rate": 3.4846392820158784e-05,
|
| 1688 |
+
"loss": 0.3512,
|
| 1689 |
+
"step": 1200
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 1.1230195712954334,
|
| 1693 |
+
"grad_norm": 0.39235842650287267,
|
| 1694 |
+
"learning_rate": 3.476009665170867e-05,
|
| 1695 |
+
"loss": 0.3503,
|
| 1696 |
+
"step": 1205
|
| 1697 |
+
},
|
| 1698 |
+
{
|
| 1699 |
+
"epoch": 1.1276794035414726,
|
| 1700 |
+
"grad_norm": 0.35965537290287625,
|
| 1701 |
+
"learning_rate": 3.467380048325855e-05,
|
| 1702 |
+
"loss": 0.3505,
|
| 1703 |
+
"step": 1210
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 1.1323392357875117,
|
| 1707 |
+
"grad_norm": 0.3147552390929704,
|
| 1708 |
+
"learning_rate": 3.458750431480842e-05,
|
| 1709 |
+
"loss": 0.3556,
|
| 1710 |
+
"step": 1215
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 1.1369990680335509,
|
| 1714 |
+
"grad_norm": 0.35667525578447856,
|
| 1715 |
+
"learning_rate": 3.4501208146358304e-05,
|
| 1716 |
+
"loss": 0.3551,
|
| 1717 |
+
"step": 1220
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"epoch": 1.14165890027959,
|
| 1721 |
+
"grad_norm": 0.3143522174903333,
|
| 1722 |
+
"learning_rate": 3.441491197790818e-05,
|
| 1723 |
+
"loss": 0.3506,
|
| 1724 |
+
"step": 1225
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 1.146318732525629,
|
| 1728 |
+
"grad_norm": 0.2953129277848881,
|
| 1729 |
+
"learning_rate": 3.432861580945806e-05,
|
| 1730 |
+
"loss": 0.3519,
|
| 1731 |
+
"step": 1230
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 1.1509785647716682,
|
| 1735 |
+
"grad_norm": 0.3201828959982261,
|
| 1736 |
+
"learning_rate": 3.424231964100794e-05,
|
| 1737 |
+
"loss": 0.351,
|
| 1738 |
+
"step": 1235
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 1.1556383970177073,
|
| 1742 |
+
"grad_norm": 0.35805902539565565,
|
| 1743 |
+
"learning_rate": 3.415602347255782e-05,
|
| 1744 |
+
"loss": 0.3496,
|
| 1745 |
+
"step": 1240
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"epoch": 1.1602982292637465,
|
| 1749 |
+
"grad_norm": 0.2844778506189992,
|
| 1750 |
+
"learning_rate": 3.40697273041077e-05,
|
| 1751 |
+
"loss": 0.3567,
|
| 1752 |
+
"step": 1245
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 1.1649580615097856,
|
| 1756 |
+
"grad_norm": 0.3932646163355652,
|
| 1757 |
+
"learning_rate": 3.398343113565758e-05,
|
| 1758 |
+
"loss": 0.3508,
|
| 1759 |
+
"step": 1250
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"epoch": 1.1696178937558248,
|
| 1763 |
+
"grad_norm": 0.27258390887519407,
|
| 1764 |
+
"learning_rate": 3.389713496720746e-05,
|
| 1765 |
+
"loss": 0.3296,
|
| 1766 |
+
"step": 1255
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 1.174277726001864,
|
| 1770 |
+
"grad_norm": 0.2775303977010617,
|
| 1771 |
+
"learning_rate": 3.381083879875734e-05,
|
| 1772 |
+
"loss": 0.3491,
|
| 1773 |
+
"step": 1260
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 1.1789375582479031,
|
| 1777 |
+
"grad_norm": 0.3028564721433078,
|
| 1778 |
+
"learning_rate": 3.3724542630307215e-05,
|
| 1779 |
+
"loss": 0.3456,
|
| 1780 |
+
"step": 1265
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 1.1835973904939423,
|
| 1784 |
+
"grad_norm": 0.32923905528364905,
|
| 1785 |
+
"learning_rate": 3.363824646185709e-05,
|
| 1786 |
+
"loss": 0.3555,
|
| 1787 |
+
"step": 1270
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 1.1882572227399812,
|
| 1791 |
+
"grad_norm": 0.2760919775973278,
|
| 1792 |
+
"learning_rate": 3.355195029340698e-05,
|
| 1793 |
+
"loss": 0.3489,
|
| 1794 |
+
"step": 1275
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 1.1929170549860204,
|
| 1798 |
+
"grad_norm": 0.3155488629032025,
|
| 1799 |
+
"learning_rate": 3.346565412495685e-05,
|
| 1800 |
+
"loss": 0.3597,
|
| 1801 |
+
"step": 1280
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"epoch": 1.1975768872320596,
|
| 1805 |
+
"grad_norm": 0.34778125198320686,
|
| 1806 |
+
"learning_rate": 3.3379357956506735e-05,
|
| 1807 |
+
"loss": 0.3605,
|
| 1808 |
+
"step": 1285
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 1.2022367194780987,
|
| 1812 |
+
"grad_norm": 0.3591989412785019,
|
| 1813 |
+
"learning_rate": 3.329306178805661e-05,
|
| 1814 |
+
"loss": 0.3439,
|
| 1815 |
+
"step": 1290
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 1.206896551724138,
|
| 1819 |
+
"grad_norm": 0.338584951279966,
|
| 1820 |
+
"learning_rate": 3.320676561960649e-05,
|
| 1821 |
+
"loss": 0.3486,
|
| 1822 |
+
"step": 1295
|
| 1823 |
+
},
|
| 1824 |
+
{
|
| 1825 |
+
"epoch": 1.211556383970177,
|
| 1826 |
+
"grad_norm": 0.44502827017418983,
|
| 1827 |
+
"learning_rate": 3.312046945115637e-05,
|
| 1828 |
+
"loss": 0.3574,
|
| 1829 |
+
"step": 1300
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"epoch": 1.2162162162162162,
|
| 1833 |
+
"grad_norm": 0.37848494564678853,
|
| 1834 |
+
"learning_rate": 3.303417328270625e-05,
|
| 1835 |
+
"loss": 0.3554,
|
| 1836 |
+
"step": 1305
|
| 1837 |
+
},
|
| 1838 |
+
{
|
| 1839 |
+
"epoch": 1.2208760484622554,
|
| 1840 |
+
"grad_norm": 0.2991926203877817,
|
| 1841 |
+
"learning_rate": 3.2947877114256126e-05,
|
| 1842 |
+
"loss": 0.3448,
|
| 1843 |
+
"step": 1310
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"epoch": 1.2255358807082946,
|
| 1847 |
+
"grad_norm": 0.33851023261699276,
|
| 1848 |
+
"learning_rate": 3.286158094580601e-05,
|
| 1849 |
+
"loss": 0.3648,
|
| 1850 |
+
"step": 1315
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 1.2301957129543337,
|
| 1854 |
+
"grad_norm": 0.27617927948407645,
|
| 1855 |
+
"learning_rate": 3.277528477735589e-05,
|
| 1856 |
+
"loss": 0.3505,
|
| 1857 |
+
"step": 1320
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 1.2348555452003729,
|
| 1861 |
+
"grad_norm": 0.31943221432421715,
|
| 1862 |
+
"learning_rate": 3.268898860890577e-05,
|
| 1863 |
+
"loss": 0.3575,
|
| 1864 |
+
"step": 1325
|
| 1865 |
+
},
|
| 1866 |
+
{
|
| 1867 |
+
"epoch": 1.2395153774464118,
|
| 1868 |
+
"grad_norm": 0.36090830340862545,
|
| 1869 |
+
"learning_rate": 3.2602692440455645e-05,
|
| 1870 |
+
"loss": 0.3459,
|
| 1871 |
+
"step": 1330
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"epoch": 1.244175209692451,
|
| 1875 |
+
"grad_norm": 0.2869837155345359,
|
| 1876 |
+
"learning_rate": 3.2516396272005524e-05,
|
| 1877 |
+
"loss": 0.3483,
|
| 1878 |
+
"step": 1335
|
| 1879 |
+
},
|
| 1880 |
+
{
|
| 1881 |
+
"epoch": 1.2488350419384902,
|
| 1882 |
+
"grad_norm": 0.4574789609384581,
|
| 1883 |
+
"learning_rate": 3.243010010355541e-05,
|
| 1884 |
+
"loss": 0.3537,
|
| 1885 |
+
"step": 1340
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"epoch": 1.2534948741845293,
|
| 1889 |
+
"grad_norm": 0.34435517087930184,
|
| 1890 |
+
"learning_rate": 3.234380393510528e-05,
|
| 1891 |
+
"loss": 0.3412,
|
| 1892 |
+
"step": 1345
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 1.2581547064305685,
|
| 1896 |
+
"grad_norm": 0.28787047833310464,
|
| 1897 |
+
"learning_rate": 3.225750776665516e-05,
|
| 1898 |
+
"loss": 0.3481,
|
| 1899 |
+
"step": 1350
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 1.2628145386766076,
|
| 1903 |
+
"grad_norm": 0.28433333546839407,
|
| 1904 |
+
"learning_rate": 3.217121159820504e-05,
|
| 1905 |
+
"loss": 0.3581,
|
| 1906 |
+
"step": 1355
|
| 1907 |
+
},
|
| 1908 |
+
{
|
| 1909 |
+
"epoch": 1.2674743709226468,
|
| 1910 |
+
"grad_norm": 0.2837264128964714,
|
| 1911 |
+
"learning_rate": 3.208491542975492e-05,
|
| 1912 |
+
"loss": 0.3475,
|
| 1913 |
+
"step": 1360
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 1.272134203168686,
|
| 1917 |
+
"grad_norm": 0.2783632546885593,
|
| 1918 |
+
"learning_rate": 3.19986192613048e-05,
|
| 1919 |
+
"loss": 0.3528,
|
| 1920 |
+
"step": 1365
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 1.2767940354147251,
|
| 1924 |
+
"grad_norm": 0.32499690495431244,
|
| 1925 |
+
"learning_rate": 3.191232309285468e-05,
|
| 1926 |
+
"loss": 0.352,
|
| 1927 |
+
"step": 1370
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"epoch": 1.281453867660764,
|
| 1931 |
+
"grad_norm": 0.3177042804556951,
|
| 1932 |
+
"learning_rate": 3.1826026924404556e-05,
|
| 1933 |
+
"loss": 0.3416,
|
| 1934 |
+
"step": 1375
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 1.2861136999068035,
|
| 1938 |
+
"grad_norm": 0.3082833632499775,
|
| 1939 |
+
"learning_rate": 3.173973075595444e-05,
|
| 1940 |
+
"loss": 0.3561,
|
| 1941 |
+
"step": 1380
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 1.2907735321528424,
|
| 1945 |
+
"grad_norm": 0.3192882141973088,
|
| 1946 |
+
"learning_rate": 3.165343458750431e-05,
|
| 1947 |
+
"loss": 0.358,
|
| 1948 |
+
"step": 1385
|
| 1949 |
+
},
|
| 1950 |
+
{
|
| 1951 |
+
"epoch": 1.2954333643988816,
|
| 1952 |
+
"grad_norm": 0.35083440823453566,
|
| 1953 |
+
"learning_rate": 3.156713841905419e-05,
|
| 1954 |
+
"loss": 0.3482,
|
| 1955 |
+
"step": 1390
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"epoch": 1.3000931966449207,
|
| 1959 |
+
"grad_norm": 0.3028496199107332,
|
| 1960 |
+
"learning_rate": 3.1480842250604076e-05,
|
| 1961 |
+
"loss": 0.3524,
|
| 1962 |
+
"step": 1395
|
| 1963 |
+
},
|
| 1964 |
+
{
|
| 1965 |
+
"epoch": 1.30475302889096,
|
| 1966 |
+
"grad_norm": 0.40238805661277516,
|
| 1967 |
+
"learning_rate": 3.1394546082153954e-05,
|
| 1968 |
+
"loss": 0.3465,
|
| 1969 |
+
"step": 1400
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"epoch": 1.309412861136999,
|
| 1973 |
+
"grad_norm": 0.38264937163405993,
|
| 1974 |
+
"learning_rate": 3.130824991370383e-05,
|
| 1975 |
+
"loss": 0.3572,
|
| 1976 |
+
"step": 1405
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 1.3140726933830382,
|
| 1980 |
+
"grad_norm": 0.3476478264061866,
|
| 1981 |
+
"learning_rate": 3.122195374525371e-05,
|
| 1982 |
+
"loss": 0.3452,
|
| 1983 |
+
"step": 1410
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 1.3187325256290774,
|
| 1987 |
+
"grad_norm": 0.29460741785810235,
|
| 1988 |
+
"learning_rate": 3.113565757680359e-05,
|
| 1989 |
+
"loss": 0.3528,
|
| 1990 |
+
"step": 1415
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 1.3233923578751166,
|
| 1994 |
+
"grad_norm": 0.3105487189575632,
|
| 1995 |
+
"learning_rate": 3.1049361408353474e-05,
|
| 1996 |
+
"loss": 0.3403,
|
| 1997 |
+
"step": 1420
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"epoch": 1.3280521901211557,
|
| 2001 |
+
"grad_norm": 0.24970556065463576,
|
| 2002 |
+
"learning_rate": 3.096306523990335e-05,
|
| 2003 |
+
"loss": 0.3481,
|
| 2004 |
+
"step": 1425
|
| 2005 |
+
},
|
| 2006 |
+
{
|
| 2007 |
+
"epoch": 1.3327120223671947,
|
| 2008 |
+
"grad_norm": 0.26478763592488186,
|
| 2009 |
+
"learning_rate": 3.0876769071453223e-05,
|
| 2010 |
+
"loss": 0.3567,
|
| 2011 |
+
"step": 1430
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"epoch": 1.337371854613234,
|
| 2015 |
+
"grad_norm": 0.3166787826392816,
|
| 2016 |
+
"learning_rate": 3.079047290300311e-05,
|
| 2017 |
+
"loss": 0.3549,
|
| 2018 |
+
"step": 1435
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 1.342031686859273,
|
| 2022 |
+
"grad_norm": 0.3370862593924141,
|
| 2023 |
+
"learning_rate": 3.070417673455299e-05,
|
| 2024 |
+
"loss": 0.3532,
|
| 2025 |
+
"step": 1440
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 1.3466915191053122,
|
| 2029 |
+
"grad_norm": 0.28943779202148834,
|
| 2030 |
+
"learning_rate": 3.061788056610287e-05,
|
| 2031 |
+
"loss": 0.3578,
|
| 2032 |
+
"step": 1445
|
| 2033 |
+
},
|
| 2034 |
+
{
|
| 2035 |
+
"epoch": 1.3513513513513513,
|
| 2036 |
+
"grad_norm": 0.3305096681079534,
|
| 2037 |
+
"learning_rate": 3.053158439765274e-05,
|
| 2038 |
+
"loss": 0.3434,
|
| 2039 |
+
"step": 1450
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 1.3560111835973905,
|
| 2043 |
+
"grad_norm": 0.30770425179734145,
|
| 2044 |
+
"learning_rate": 3.0445288229202625e-05,
|
| 2045 |
+
"loss": 0.3513,
|
| 2046 |
+
"step": 1455
|
| 2047 |
+
},
|
| 2048 |
+
{
|
| 2049 |
+
"epoch": 1.3606710158434296,
|
| 2050 |
+
"grad_norm": 0.29217231918736536,
|
| 2051 |
+
"learning_rate": 3.0358992060752506e-05,
|
| 2052 |
+
"loss": 0.357,
|
| 2053 |
+
"step": 1460
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"epoch": 1.3653308480894688,
|
| 2057 |
+
"grad_norm": 0.30497087668658185,
|
| 2058 |
+
"learning_rate": 3.027269589230238e-05,
|
| 2059 |
+
"loss": 0.3512,
|
| 2060 |
+
"step": 1465
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 1.369990680335508,
|
| 2064 |
+
"grad_norm": 0.3169652144095064,
|
| 2065 |
+
"learning_rate": 3.018639972385226e-05,
|
| 2066 |
+
"loss": 0.3485,
|
| 2067 |
+
"step": 1470
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 1.3746505125815471,
|
| 2071 |
+
"grad_norm": 0.33878452557048316,
|
| 2072 |
+
"learning_rate": 3.010010355540214e-05,
|
| 2073 |
+
"loss": 0.3501,
|
| 2074 |
+
"step": 1475
|
| 2075 |
+
},
|
| 2076 |
+
{
|
| 2077 |
+
"epoch": 1.3793103448275863,
|
| 2078 |
+
"grad_norm": 0.25128935811284947,
|
| 2079 |
+
"learning_rate": 3.001380738695202e-05,
|
| 2080 |
+
"loss": 0.3342,
|
| 2081 |
+
"step": 1480
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"epoch": 1.3839701770736252,
|
| 2085 |
+
"grad_norm": 0.2807928725658594,
|
| 2086 |
+
"learning_rate": 2.99275112185019e-05,
|
| 2087 |
+
"loss": 0.3515,
|
| 2088 |
+
"step": 1485
|
| 2089 |
+
},
|
| 2090 |
+
{
|
| 2091 |
+
"epoch": 1.3886300093196646,
|
| 2092 |
+
"grad_norm": 0.32627986332317066,
|
| 2093 |
+
"learning_rate": 2.984121505005178e-05,
|
| 2094 |
+
"loss": 0.3564,
|
| 2095 |
+
"step": 1490
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"epoch": 1.3932898415657036,
|
| 2099 |
+
"grad_norm": 0.34700278304006454,
|
| 2100 |
+
"learning_rate": 2.9754918881601657e-05,
|
| 2101 |
+
"loss": 0.3647,
|
| 2102 |
+
"step": 1495
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 1.3979496738117427,
|
| 2106 |
+
"grad_norm": 0.33291240407016004,
|
| 2107 |
+
"learning_rate": 2.966862271315154e-05,
|
| 2108 |
+
"loss": 0.3608,
|
| 2109 |
+
"step": 1500
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"epoch": 1.402609506057782,
|
| 2113 |
+
"grad_norm": 0.36233550445620966,
|
| 2114 |
+
"learning_rate": 2.9582326544701417e-05,
|
| 2115 |
+
"loss": 0.3576,
|
| 2116 |
+
"step": 1505
|
| 2117 |
+
},
|
| 2118 |
+
{
|
| 2119 |
+
"epoch": 1.407269338303821,
|
| 2120 |
+
"grad_norm": 0.299037421676663,
|
| 2121 |
+
"learning_rate": 2.9496030376251292e-05,
|
| 2122 |
+
"loss": 0.35,
|
| 2123 |
+
"step": 1510
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"epoch": 1.4119291705498602,
|
| 2127 |
+
"grad_norm": 0.2779558872885985,
|
| 2128 |
+
"learning_rate": 2.9409734207801177e-05,
|
| 2129 |
+
"loss": 0.3536,
|
| 2130 |
+
"step": 1515
|
| 2131 |
+
},
|
| 2132 |
+
{
|
| 2133 |
+
"epoch": 1.4165890027958994,
|
| 2134 |
+
"grad_norm": 0.300917823810139,
|
| 2135 |
+
"learning_rate": 2.9323438039351052e-05,
|
| 2136 |
+
"loss": 0.3527,
|
| 2137 |
+
"step": 1520
|
| 2138 |
+
},
|
| 2139 |
+
{
|
| 2140 |
+
"epoch": 1.4212488350419386,
|
| 2141 |
+
"grad_norm": 0.2914307296082574,
|
| 2142 |
+
"learning_rate": 2.9237141870900937e-05,
|
| 2143 |
+
"loss": 0.3487,
|
| 2144 |
+
"step": 1525
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 1.4259086672879777,
|
| 2148 |
+
"grad_norm": 0.2856071431198464,
|
| 2149 |
+
"learning_rate": 2.9150845702450812e-05,
|
| 2150 |
+
"loss": 0.3476,
|
| 2151 |
+
"step": 1530
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"epoch": 1.4305684995340169,
|
| 2155 |
+
"grad_norm": 0.3129750830236417,
|
| 2156 |
+
"learning_rate": 2.906454953400069e-05,
|
| 2157 |
+
"loss": 0.3524,
|
| 2158 |
+
"step": 1535
|
| 2159 |
+
},
|
| 2160 |
+
{
|
| 2161 |
+
"epoch": 1.4352283317800558,
|
| 2162 |
+
"grad_norm": 0.3179106281194418,
|
| 2163 |
+
"learning_rate": 2.897825336555057e-05,
|
| 2164 |
+
"loss": 0.3485,
|
| 2165 |
+
"step": 1540
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"epoch": 1.439888164026095,
|
| 2169 |
+
"grad_norm": 0.38784207287547934,
|
| 2170 |
+
"learning_rate": 2.889195719710045e-05,
|
| 2171 |
+
"loss": 0.349,
|
| 2172 |
+
"step": 1545
|
| 2173 |
+
},
|
| 2174 |
+
{
|
| 2175 |
+
"epoch": 1.4445479962721341,
|
| 2176 |
+
"grad_norm": 0.3753888528298807,
|
| 2177 |
+
"learning_rate": 2.8805661028650328e-05,
|
| 2178 |
+
"loss": 0.3451,
|
| 2179 |
+
"step": 1550
|
| 2180 |
+
},
|
| 2181 |
+
{
|
| 2182 |
+
"epoch": 1.4492078285181733,
|
| 2183 |
+
"grad_norm": 0.41321946201235715,
|
| 2184 |
+
"learning_rate": 2.871936486020021e-05,
|
| 2185 |
+
"loss": 0.3426,
|
| 2186 |
+
"step": 1555
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 1.4538676607642125,
|
| 2190 |
+
"grad_norm": 0.3200312045653147,
|
| 2191 |
+
"learning_rate": 2.8633068691750088e-05,
|
| 2192 |
+
"loss": 0.3453,
|
| 2193 |
+
"step": 1560
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"epoch": 1.4585274930102516,
|
| 2197 |
+
"grad_norm": 0.3307103194113536,
|
| 2198 |
+
"learning_rate": 2.854677252329997e-05,
|
| 2199 |
+
"loss": 0.3476,
|
| 2200 |
+
"step": 1565
|
| 2201 |
+
},
|
| 2202 |
+
{
|
| 2203 |
+
"epoch": 1.4631873252562908,
|
| 2204 |
+
"grad_norm": 0.30755068927447626,
|
| 2205 |
+
"learning_rate": 2.8460476354849848e-05,
|
| 2206 |
+
"loss": 0.3546,
|
| 2207 |
+
"step": 1570
|
| 2208 |
+
},
|
| 2209 |
+
{
|
| 2210 |
+
"epoch": 1.46784715750233,
|
| 2211 |
+
"grad_norm": 0.3595240127776032,
|
| 2212 |
+
"learning_rate": 2.8374180186399723e-05,
|
| 2213 |
+
"loss": 0.3546,
|
| 2214 |
+
"step": 1575
|
| 2215 |
+
},
|
| 2216 |
+
{
|
| 2217 |
+
"epoch": 1.4725069897483691,
|
| 2218 |
+
"grad_norm": 0.3689101626664539,
|
| 2219 |
+
"learning_rate": 2.8287884017949608e-05,
|
| 2220 |
+
"loss": 0.3557,
|
| 2221 |
+
"step": 1580
|
| 2222 |
+
},
|
| 2223 |
+
{
|
| 2224 |
+
"epoch": 1.477166821994408,
|
| 2225 |
+
"grad_norm": 0.3583075317481452,
|
| 2226 |
+
"learning_rate": 2.8201587849499482e-05,
|
| 2227 |
+
"loss": 0.3487,
|
| 2228 |
+
"step": 1585
|
| 2229 |
+
},
|
| 2230 |
+
{
|
| 2231 |
+
"epoch": 1.4818266542404475,
|
| 2232 |
+
"grad_norm": 0.35602642963014874,
|
| 2233 |
+
"learning_rate": 2.811529168104936e-05,
|
| 2234 |
+
"loss": 0.3591,
|
| 2235 |
+
"step": 1590
|
| 2236 |
+
},
|
| 2237 |
+
{
|
| 2238 |
+
"epoch": 1.4864864864864864,
|
| 2239 |
+
"grad_norm": 0.315787516045647,
|
| 2240 |
+
"learning_rate": 2.8028995512599242e-05,
|
| 2241 |
+
"loss": 0.3499,
|
| 2242 |
+
"step": 1595
|
| 2243 |
+
},
|
| 2244 |
+
{
|
| 2245 |
+
"epoch": 1.4911463187325256,
|
| 2246 |
+
"grad_norm": 0.3590015577504981,
|
| 2247 |
+
"learning_rate": 2.794269934414912e-05,
|
| 2248 |
+
"loss": 0.3512,
|
| 2249 |
+
"step": 1600
|
| 2250 |
+
},
|
| 2251 |
+
{
|
| 2252 |
+
"epoch": 1.4958061509785647,
|
| 2253 |
+
"grad_norm": 0.3122273467939273,
|
| 2254 |
+
"learning_rate": 2.7856403175699002e-05,
|
| 2255 |
+
"loss": 0.3557,
|
| 2256 |
+
"step": 1605
|
| 2257 |
+
},
|
| 2258 |
+
{
|
| 2259 |
+
"epoch": 1.500465983224604,
|
| 2260 |
+
"grad_norm": 0.3542977601514441,
|
| 2261 |
+
"learning_rate": 2.777010700724888e-05,
|
| 2262 |
+
"loss": 0.3508,
|
| 2263 |
+
"step": 1610
|
| 2264 |
+
},
|
| 2265 |
+
{
|
| 2266 |
+
"epoch": 1.505125815470643,
|
| 2267 |
+
"grad_norm": 0.3391938107105768,
|
| 2268 |
+
"learning_rate": 2.768381083879876e-05,
|
| 2269 |
+
"loss": 0.3458,
|
| 2270 |
+
"step": 1615
|
| 2271 |
+
},
|
| 2272 |
+
{
|
| 2273 |
+
"epoch": 1.5097856477166822,
|
| 2274 |
+
"grad_norm": 0.2960461404701141,
|
| 2275 |
+
"learning_rate": 2.759751467034864e-05,
|
| 2276 |
+
"loss": 0.351,
|
| 2277 |
+
"step": 1620
|
| 2278 |
+
},
|
| 2279 |
+
{
|
| 2280 |
+
"epoch": 1.5144454799627214,
|
| 2281 |
+
"grad_norm": 0.27438908752786395,
|
| 2282 |
+
"learning_rate": 2.751121850189852e-05,
|
| 2283 |
+
"loss": 0.3428,
|
| 2284 |
+
"step": 1625
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"epoch": 1.5191053122087603,
|
| 2288 |
+
"grad_norm": 0.28849482254982545,
|
| 2289 |
+
"learning_rate": 2.7424922333448393e-05,
|
| 2290 |
+
"loss": 0.3366,
|
| 2291 |
+
"step": 1630
|
| 2292 |
+
},
|
| 2293 |
+
{
|
| 2294 |
+
"epoch": 1.5237651444547997,
|
| 2295 |
+
"grad_norm": 0.3049772048163229,
|
| 2296 |
+
"learning_rate": 2.7338626164998278e-05,
|
| 2297 |
+
"loss": 0.3433,
|
| 2298 |
+
"step": 1635
|
| 2299 |
+
},
|
| 2300 |
+
{
|
| 2301 |
+
"epoch": 1.5284249767008387,
|
| 2302 |
+
"grad_norm": 0.3325604613028116,
|
| 2303 |
+
"learning_rate": 2.7252329996548153e-05,
|
| 2304 |
+
"loss": 0.3463,
|
| 2305 |
+
"step": 1640
|
| 2306 |
+
},
|
| 2307 |
+
{
|
| 2308 |
+
"epoch": 1.533084808946878,
|
| 2309 |
+
"grad_norm": 0.27987089540936305,
|
| 2310 |
+
"learning_rate": 2.7166033828098038e-05,
|
| 2311 |
+
"loss": 0.3614,
|
| 2312 |
+
"step": 1645
|
| 2313 |
+
},
|
| 2314 |
+
{
|
| 2315 |
+
"epoch": 1.537744641192917,
|
| 2316 |
+
"grad_norm": 0.3045635963851511,
|
| 2317 |
+
"learning_rate": 2.7079737659647913e-05,
|
| 2318 |
+
"loss": 0.3505,
|
| 2319 |
+
"step": 1650
|
| 2320 |
+
},
|
| 2321 |
+
{
|
| 2322 |
+
"epoch": 1.5424044734389561,
|
| 2323 |
+
"grad_norm": 0.3290983977476954,
|
| 2324 |
+
"learning_rate": 2.699344149119779e-05,
|
| 2325 |
+
"loss": 0.3572,
|
| 2326 |
+
"step": 1655
|
| 2327 |
+
},
|
| 2328 |
+
{
|
| 2329 |
+
"epoch": 1.5470643056849953,
|
| 2330 |
+
"grad_norm": 0.28498739942206075,
|
| 2331 |
+
"learning_rate": 2.6907145322747673e-05,
|
| 2332 |
+
"loss": 0.3517,
|
| 2333 |
+
"step": 1660
|
| 2334 |
+
},
|
| 2335 |
+
{
|
| 2336 |
+
"epoch": 1.5517241379310345,
|
| 2337 |
+
"grad_norm": 0.329718281320631,
|
| 2338 |
+
"learning_rate": 2.682084915429755e-05,
|
| 2339 |
+
"loss": 0.3425,
|
| 2340 |
+
"step": 1665
|
| 2341 |
+
},
|
| 2342 |
+
{
|
| 2343 |
+
"epoch": 1.5563839701770736,
|
| 2344 |
+
"grad_norm": 0.3101714326036767,
|
| 2345 |
+
"learning_rate": 2.673455298584743e-05,
|
| 2346 |
+
"loss": 0.3473,
|
| 2347 |
+
"step": 1670
|
| 2348 |
+
},
|
| 2349 |
+
{
|
| 2350 |
+
"epoch": 1.5610438024231128,
|
| 2351 |
+
"grad_norm": 0.31191112180013836,
|
| 2352 |
+
"learning_rate": 2.664825681739731e-05,
|
| 2353 |
+
"loss": 0.3549,
|
| 2354 |
+
"step": 1675
|
| 2355 |
+
},
|
| 2356 |
+
{
|
| 2357 |
+
"epoch": 1.565703634669152,
|
| 2358 |
+
"grad_norm": 0.2903071511782437,
|
| 2359 |
+
"learning_rate": 2.6561960648947186e-05,
|
| 2360 |
+
"loss": 0.3465,
|
| 2361 |
+
"step": 1680
|
| 2362 |
+
},
|
| 2363 |
+
{
|
| 2364 |
+
"epoch": 1.570363466915191,
|
| 2365 |
+
"grad_norm": 0.28707119756169747,
|
| 2366 |
+
"learning_rate": 2.647566448049707e-05,
|
| 2367 |
+
"loss": 0.3425,
|
| 2368 |
+
"step": 1685
|
| 2369 |
+
},
|
| 2370 |
+
{
|
| 2371 |
+
"epoch": 1.5750232991612303,
|
| 2372 |
+
"grad_norm": 0.27354054458513866,
|
| 2373 |
+
"learning_rate": 2.6389368312046945e-05,
|
| 2374 |
+
"loss": 0.3547,
|
| 2375 |
+
"step": 1690
|
| 2376 |
+
},
|
| 2377 |
+
{
|
| 2378 |
+
"epoch": 1.5796831314072692,
|
| 2379 |
+
"grad_norm": 0.3125368993905314,
|
| 2380 |
+
"learning_rate": 2.6303072143596824e-05,
|
| 2381 |
+
"loss": 0.3587,
|
| 2382 |
+
"step": 1695
|
| 2383 |
+
},
|
| 2384 |
+
{
|
| 2385 |
+
"epoch": 1.5843429636533086,
|
| 2386 |
+
"grad_norm": 0.36883984027257033,
|
| 2387 |
+
"learning_rate": 2.6216775975146705e-05,
|
| 2388 |
+
"loss": 0.3511,
|
| 2389 |
+
"step": 1700
|
| 2390 |
+
},
|
| 2391 |
+
{
|
| 2392 |
+
"epoch": 1.5890027958993476,
|
| 2393 |
+
"grad_norm": 0.28692323766609046,
|
| 2394 |
+
"learning_rate": 2.6130479806696584e-05,
|
| 2395 |
+
"loss": 0.3485,
|
| 2396 |
+
"step": 1705
|
| 2397 |
+
},
|
| 2398 |
+
{
|
| 2399 |
+
"epoch": 1.5936626281453867,
|
| 2400 |
+
"grad_norm": 0.3481893519300557,
|
| 2401 |
+
"learning_rate": 2.6044183638246462e-05,
|
| 2402 |
+
"loss": 0.3541,
|
| 2403 |
+
"step": 1710
|
| 2404 |
+
},
|
| 2405 |
+
{
|
| 2406 |
+
"epoch": 1.598322460391426,
|
| 2407 |
+
"grad_norm": 0.23239082555167248,
|
| 2408 |
+
"learning_rate": 2.5957887469796343e-05,
|
| 2409 |
+
"loss": 0.3434,
|
| 2410 |
+
"step": 1715
|
| 2411 |
+
},
|
| 2412 |
+
{
|
| 2413 |
+
"epoch": 1.602982292637465,
|
| 2414 |
+
"grad_norm": 0.2999944857695801,
|
| 2415 |
+
"learning_rate": 2.587159130134622e-05,
|
| 2416 |
+
"loss": 0.348,
|
| 2417 |
+
"step": 1720
|
| 2418 |
+
},
|
| 2419 |
+
{
|
| 2420 |
+
"epoch": 1.6076421248835042,
|
| 2421 |
+
"grad_norm": 0.2722028105267068,
|
| 2422 |
+
"learning_rate": 2.5785295132896096e-05,
|
| 2423 |
+
"loss": 0.3478,
|
| 2424 |
+
"step": 1725
|
| 2425 |
+
},
|
| 2426 |
+
{
|
| 2427 |
+
"epoch": 1.6123019571295434,
|
| 2428 |
+
"grad_norm": 0.3090404281420746,
|
| 2429 |
+
"learning_rate": 2.569899896444598e-05,
|
| 2430 |
+
"loss": 0.3417,
|
| 2431 |
+
"step": 1730
|
| 2432 |
+
},
|
| 2433 |
+
{
|
| 2434 |
+
"epoch": 1.6169617893755825,
|
| 2435 |
+
"grad_norm": 0.34151837735928975,
|
| 2436 |
+
"learning_rate": 2.5612702795995856e-05,
|
| 2437 |
+
"loss": 0.3535,
|
| 2438 |
+
"step": 1735
|
| 2439 |
+
},
|
| 2440 |
+
{
|
| 2441 |
+
"epoch": 1.6216216216216215,
|
| 2442 |
+
"grad_norm": 0.3138996767589973,
|
| 2443 |
+
"learning_rate": 2.552640662754574e-05,
|
| 2444 |
+
"loss": 0.3471,
|
| 2445 |
+
"step": 1740
|
| 2446 |
+
},
|
| 2447 |
+
{
|
| 2448 |
+
"epoch": 1.6262814538676609,
|
| 2449 |
+
"grad_norm": 0.2434520617717452,
|
| 2450 |
+
"learning_rate": 2.5440110459095616e-05,
|
| 2451 |
+
"loss": 0.3543,
|
| 2452 |
+
"step": 1745
|
| 2453 |
+
},
|
| 2454 |
+
{
|
| 2455 |
+
"epoch": 1.6309412861136998,
|
| 2456 |
+
"grad_norm": 0.3320654632100791,
|
| 2457 |
+
"learning_rate": 2.5353814290645494e-05,
|
| 2458 |
+
"loss": 0.3527,
|
| 2459 |
+
"step": 1750
|
| 2460 |
+
},
|
| 2461 |
+
{
|
| 2462 |
+
"epoch": 1.6356011183597392,
|
| 2463 |
+
"grad_norm": 0.30123970869727656,
|
| 2464 |
+
"learning_rate": 2.5267518122195376e-05,
|
| 2465 |
+
"loss": 0.3446,
|
| 2466 |
+
"step": 1755
|
| 2467 |
+
},
|
| 2468 |
+
{
|
| 2469 |
+
"epoch": 1.6402609506057781,
|
| 2470 |
+
"grad_norm": 0.37186285485228093,
|
| 2471 |
+
"learning_rate": 2.5181221953745254e-05,
|
| 2472 |
+
"loss": 0.353,
|
| 2473 |
+
"step": 1760
|
| 2474 |
+
},
|
| 2475 |
+
{
|
| 2476 |
+
"epoch": 1.6449207828518173,
|
| 2477 |
+
"grad_norm": 0.3206055010260991,
|
| 2478 |
+
"learning_rate": 2.5094925785295132e-05,
|
| 2479 |
+
"loss": 0.3544,
|
| 2480 |
+
"step": 1765
|
| 2481 |
+
},
|
| 2482 |
+
{
|
| 2483 |
+
"epoch": 1.6495806150978565,
|
| 2484 |
+
"grad_norm": 0.2611046380695705,
|
| 2485 |
+
"learning_rate": 2.5008629616845014e-05,
|
| 2486 |
+
"loss": 0.3477,
|
| 2487 |
+
"step": 1770
|
| 2488 |
+
},
|
| 2489 |
+
{
|
| 2490 |
+
"epoch": 1.6542404473438956,
|
| 2491 |
+
"grad_norm": 0.33682031679412877,
|
| 2492 |
+
"learning_rate": 2.4922333448394892e-05,
|
| 2493 |
+
"loss": 0.3403,
|
| 2494 |
+
"step": 1775
|
| 2495 |
+
},
|
| 2496 |
+
{
|
| 2497 |
+
"epoch": 1.6589002795899348,
|
| 2498 |
+
"grad_norm": 0.38536041112111596,
|
| 2499 |
+
"learning_rate": 2.483603727994477e-05,
|
| 2500 |
+
"loss": 0.3503,
|
| 2501 |
+
"step": 1780
|
| 2502 |
+
},
|
| 2503 |
+
{
|
| 2504 |
+
"epoch": 1.6635601118359737,
|
| 2505 |
+
"grad_norm": 0.34997202362889474,
|
| 2506 |
+
"learning_rate": 2.4749741111494652e-05,
|
| 2507 |
+
"loss": 0.3475,
|
| 2508 |
+
"step": 1785
|
| 2509 |
+
},
|
| 2510 |
+
{
|
| 2511 |
+
"epoch": 1.6682199440820131,
|
| 2512 |
+
"grad_norm": 0.31250485504527636,
|
| 2513 |
+
"learning_rate": 2.466344494304453e-05,
|
| 2514 |
+
"loss": 0.3472,
|
| 2515 |
+
"step": 1790
|
| 2516 |
+
},
|
| 2517 |
+
{
|
| 2518 |
+
"epoch": 1.672879776328052,
|
| 2519 |
+
"grad_norm": 0.28326350593918304,
|
| 2520 |
+
"learning_rate": 2.457714877459441e-05,
|
| 2521 |
+
"loss": 0.3393,
|
| 2522 |
+
"step": 1795
|
| 2523 |
+
},
|
| 2524 |
+
{
|
| 2525 |
+
"epoch": 1.6775396085740915,
|
| 2526 |
+
"grad_norm": 0.34376719631262564,
|
| 2527 |
+
"learning_rate": 2.4490852606144287e-05,
|
| 2528 |
+
"loss": 0.3395,
|
| 2529 |
+
"step": 1800
|
| 2530 |
+
},
|
| 2531 |
+
{
|
| 2532 |
+
"epoch": 1.6821994408201304,
|
| 2533 |
+
"grad_norm": 0.337407219640378,
|
| 2534 |
+
"learning_rate": 2.440455643769417e-05,
|
| 2535 |
+
"loss": 0.3426,
|
| 2536 |
+
"step": 1805
|
| 2537 |
+
},
|
| 2538 |
+
{
|
| 2539 |
+
"epoch": 1.6868592730661698,
|
| 2540 |
+
"grad_norm": 0.284410404461632,
|
| 2541 |
+
"learning_rate": 2.4318260269244047e-05,
|
| 2542 |
+
"loss": 0.3461,
|
| 2543 |
+
"step": 1810
|
| 2544 |
+
},
|
| 2545 |
+
{
|
| 2546 |
+
"epoch": 1.6915191053122087,
|
| 2547 |
+
"grad_norm": 0.2582585348386067,
|
| 2548 |
+
"learning_rate": 2.4231964100793925e-05,
|
| 2549 |
+
"loss": 0.3338,
|
| 2550 |
+
"step": 1815
|
| 2551 |
+
},
|
| 2552 |
+
{
|
| 2553 |
+
"epoch": 1.696178937558248,
|
| 2554 |
+
"grad_norm": 0.2835612157949495,
|
| 2555 |
+
"learning_rate": 2.4145667932343803e-05,
|
| 2556 |
+
"loss": 0.3452,
|
| 2557 |
+
"step": 1820
|
| 2558 |
+
},
|
| 2559 |
+
{
|
| 2560 |
+
"epoch": 1.700838769804287,
|
| 2561 |
+
"grad_norm": 0.26711876772223536,
|
| 2562 |
+
"learning_rate": 2.4059371763893685e-05,
|
| 2563 |
+
"loss": 0.3498,
|
| 2564 |
+
"step": 1825
|
| 2565 |
+
},
|
| 2566 |
+
{
|
| 2567 |
+
"epoch": 1.7054986020503262,
|
| 2568 |
+
"grad_norm": 0.2753356035744131,
|
| 2569 |
+
"learning_rate": 2.3973075595443563e-05,
|
| 2570 |
+
"loss": 0.3548,
|
| 2571 |
+
"step": 1830
|
| 2572 |
+
},
|
| 2573 |
+
{
|
| 2574 |
+
"epoch": 1.7101584342963654,
|
| 2575 |
+
"grad_norm": 0.37119872214335053,
|
| 2576 |
+
"learning_rate": 2.388677942699344e-05,
|
| 2577 |
+
"loss": 0.3498,
|
| 2578 |
+
"step": 1835
|
| 2579 |
+
},
|
| 2580 |
+
{
|
| 2581 |
+
"epoch": 1.7148182665424043,
|
| 2582 |
+
"grad_norm": 0.30893699958152193,
|
| 2583 |
+
"learning_rate": 2.3800483258543323e-05,
|
| 2584 |
+
"loss": 0.346,
|
| 2585 |
+
"step": 1840
|
| 2586 |
+
},
|
| 2587 |
+
{
|
| 2588 |
+
"epoch": 1.7194780987884437,
|
| 2589 |
+
"grad_norm": 0.2709694108627688,
|
| 2590 |
+
"learning_rate": 2.37141870900932e-05,
|
| 2591 |
+
"loss": 0.3505,
|
| 2592 |
+
"step": 1845
|
| 2593 |
+
},
|
| 2594 |
+
{
|
| 2595 |
+
"epoch": 1.7241379310344827,
|
| 2596 |
+
"grad_norm": 0.2723143829630325,
|
| 2597 |
+
"learning_rate": 2.3627890921643083e-05,
|
| 2598 |
+
"loss": 0.3333,
|
| 2599 |
+
"step": 1850
|
| 2600 |
+
},
|
| 2601 |
+
{
|
| 2602 |
+
"epoch": 1.728797763280522,
|
| 2603 |
+
"grad_norm": 0.312759023168839,
|
| 2604 |
+
"learning_rate": 2.3541594753192957e-05,
|
| 2605 |
+
"loss": 0.3432,
|
| 2606 |
+
"step": 1855
|
| 2607 |
+
},
|
| 2608 |
+
{
|
| 2609 |
+
"epoch": 1.733457595526561,
|
| 2610 |
+
"grad_norm": 0.3139145212017304,
|
| 2611 |
+
"learning_rate": 2.345529858474284e-05,
|
| 2612 |
+
"loss": 0.3437,
|
| 2613 |
+
"step": 1860
|
| 2614 |
+
},
|
| 2615 |
+
{
|
| 2616 |
+
"epoch": 1.7381174277726001,
|
| 2617 |
+
"grad_norm": 0.3403229129858024,
|
| 2618 |
+
"learning_rate": 2.3369002416292717e-05,
|
| 2619 |
+
"loss": 0.343,
|
| 2620 |
+
"step": 1865
|
| 2621 |
+
},
|
| 2622 |
+
{
|
| 2623 |
+
"epoch": 1.7427772600186393,
|
| 2624 |
+
"grad_norm": 0.3488122581299756,
|
| 2625 |
+
"learning_rate": 2.32827062478426e-05,
|
| 2626 |
+
"loss": 0.342,
|
| 2627 |
+
"step": 1870
|
| 2628 |
+
},
|
| 2629 |
+
{
|
| 2630 |
+
"epoch": 1.7474370922646785,
|
| 2631 |
+
"grad_norm": 0.276028106726438,
|
| 2632 |
+
"learning_rate": 2.3196410079392474e-05,
|
| 2633 |
+
"loss": 0.3508,
|
| 2634 |
+
"step": 1875
|
| 2635 |
+
},
|
| 2636 |
+
{
|
| 2637 |
+
"epoch": 1.7520969245107176,
|
| 2638 |
+
"grad_norm": 0.34777657040460414,
|
| 2639 |
+
"learning_rate": 2.3110113910942355e-05,
|
| 2640 |
+
"loss": 0.3453,
|
| 2641 |
+
"step": 1880
|
| 2642 |
+
},
|
| 2643 |
+
{
|
| 2644 |
+
"epoch": 1.7567567567567568,
|
| 2645 |
+
"grad_norm": 0.28277033351401737,
|
| 2646 |
+
"learning_rate": 2.3023817742492234e-05,
|
| 2647 |
+
"loss": 0.3506,
|
| 2648 |
+
"step": 1885
|
| 2649 |
+
},
|
| 2650 |
+
{
|
| 2651 |
+
"epoch": 1.761416589002796,
|
| 2652 |
+
"grad_norm": 0.28150023341385944,
|
| 2653 |
+
"learning_rate": 2.2937521574042115e-05,
|
| 2654 |
+
"loss": 0.3481,
|
| 2655 |
+
"step": 1890
|
| 2656 |
+
},
|
| 2657 |
+
{
|
| 2658 |
+
"epoch": 1.766076421248835,
|
| 2659 |
+
"grad_norm": 0.33815617945283766,
|
| 2660 |
+
"learning_rate": 2.285122540559199e-05,
|
| 2661 |
+
"loss": 0.346,
|
| 2662 |
+
"step": 1895
|
| 2663 |
+
},
|
| 2664 |
+
{
|
| 2665 |
+
"epoch": 1.7707362534948743,
|
| 2666 |
+
"grad_norm": 0.5242107536520081,
|
| 2667 |
+
"learning_rate": 2.276492923714187e-05,
|
| 2668 |
+
"loss": 0.3395,
|
| 2669 |
+
"step": 1900
|
| 2670 |
+
},
|
| 2671 |
+
{
|
| 2672 |
+
"epoch": 1.7753960857409132,
|
| 2673 |
+
"grad_norm": 0.27658505149973067,
|
| 2674 |
+
"learning_rate": 2.267863306869175e-05,
|
| 2675 |
+
"loss": 0.3375,
|
| 2676 |
+
"step": 1905
|
| 2677 |
+
},
|
| 2678 |
+
{
|
| 2679 |
+
"epoch": 1.7800559179869526,
|
| 2680 |
+
"grad_norm": 0.26293768037163656,
|
| 2681 |
+
"learning_rate": 2.259233690024163e-05,
|
| 2682 |
+
"loss": 0.3501,
|
| 2683 |
+
"step": 1910
|
| 2684 |
+
},
|
| 2685 |
+
{
|
| 2686 |
+
"epoch": 1.7847157502329916,
|
| 2687 |
+
"grad_norm": 0.2979119949199864,
|
| 2688 |
+
"learning_rate": 2.250604073179151e-05,
|
| 2689 |
+
"loss": 0.3336,
|
| 2690 |
+
"step": 1915
|
| 2691 |
+
},
|
| 2692 |
+
{
|
| 2693 |
+
"epoch": 1.7893755824790307,
|
| 2694 |
+
"grad_norm": 0.32539728714049454,
|
| 2695 |
+
"learning_rate": 2.2419744563341388e-05,
|
| 2696 |
+
"loss": 0.3496,
|
| 2697 |
+
"step": 1920
|
| 2698 |
+
},
|
| 2699 |
+
{
|
| 2700 |
+
"epoch": 1.7940354147250699,
|
| 2701 |
+
"grad_norm": 0.26241094728133707,
|
| 2702 |
+
"learning_rate": 2.233344839489127e-05,
|
| 2703 |
+
"loss": 0.3461,
|
| 2704 |
+
"step": 1925
|
| 2705 |
+
},
|
| 2706 |
+
{
|
| 2707 |
+
"epoch": 1.798695246971109,
|
| 2708 |
+
"grad_norm": 0.29609284549595116,
|
| 2709 |
+
"learning_rate": 2.2247152226441148e-05,
|
| 2710 |
+
"loss": 0.3427,
|
| 2711 |
+
"step": 1930
|
| 2712 |
+
},
|
| 2713 |
+
{
|
| 2714 |
+
"epoch": 1.8033550792171482,
|
| 2715 |
+
"grad_norm": 0.29044024448406247,
|
| 2716 |
+
"learning_rate": 2.2160856057991026e-05,
|
| 2717 |
+
"loss": 0.3477,
|
| 2718 |
+
"step": 1935
|
| 2719 |
+
},
|
| 2720 |
+
{
|
| 2721 |
+
"epoch": 1.8080149114631874,
|
| 2722 |
+
"grad_norm": 0.2692858432041334,
|
| 2723 |
+
"learning_rate": 2.2074559889540904e-05,
|
| 2724 |
+
"loss": 0.3354,
|
| 2725 |
+
"step": 1940
|
| 2726 |
+
},
|
| 2727 |
+
{
|
| 2728 |
+
"epoch": 1.8126747437092265,
|
| 2729 |
+
"grad_norm": 0.27100028935101467,
|
| 2730 |
+
"learning_rate": 2.1988263721090786e-05,
|
| 2731 |
+
"loss": 0.3522,
|
| 2732 |
+
"step": 1945
|
| 2733 |
+
},
|
| 2734 |
+
{
|
| 2735 |
+
"epoch": 1.8173345759552655,
|
| 2736 |
+
"grad_norm": 0.2532552030052246,
|
| 2737 |
+
"learning_rate": 2.1901967552640664e-05,
|
| 2738 |
+
"loss": 0.3354,
|
| 2739 |
+
"step": 1950
|
| 2740 |
+
},
|
| 2741 |
+
{
|
| 2742 |
+
"epoch": 1.8219944082013049,
|
| 2743 |
+
"grad_norm": 0.314442561376392,
|
| 2744 |
+
"learning_rate": 2.1815671384190542e-05,
|
| 2745 |
+
"loss": 0.3435,
|
| 2746 |
+
"step": 1955
|
| 2747 |
+
},
|
| 2748 |
+
{
|
| 2749 |
+
"epoch": 1.8266542404473438,
|
| 2750 |
+
"grad_norm": 0.31415208903879177,
|
| 2751 |
+
"learning_rate": 2.172937521574042e-05,
|
| 2752 |
+
"loss": 0.3472,
|
| 2753 |
+
"step": 1960
|
| 2754 |
+
},
|
| 2755 |
+
{
|
| 2756 |
+
"epoch": 1.8313140726933832,
|
| 2757 |
+
"grad_norm": 0.29355246839128013,
|
| 2758 |
+
"learning_rate": 2.1643079047290302e-05,
|
| 2759 |
+
"loss": 0.3486,
|
| 2760 |
+
"step": 1965
|
| 2761 |
+
},
|
| 2762 |
+
{
|
| 2763 |
+
"epoch": 1.8359739049394221,
|
| 2764 |
+
"grad_norm": 0.28984756640134973,
|
| 2765 |
+
"learning_rate": 2.155678287884018e-05,
|
| 2766 |
+
"loss": 0.3462,
|
| 2767 |
+
"step": 1970
|
| 2768 |
+
},
|
| 2769 |
+
{
|
| 2770 |
+
"epoch": 1.8406337371854613,
|
| 2771 |
+
"grad_norm": 0.2753419738661481,
|
| 2772 |
+
"learning_rate": 2.147048671039006e-05,
|
| 2773 |
+
"loss": 0.3541,
|
| 2774 |
+
"step": 1975
|
| 2775 |
+
},
|
| 2776 |
+
{
|
| 2777 |
+
"epoch": 1.8452935694315005,
|
| 2778 |
+
"grad_norm": 0.2638737876936191,
|
| 2779 |
+
"learning_rate": 2.1384190541939937e-05,
|
| 2780 |
+
"loss": 0.3445,
|
| 2781 |
+
"step": 1980
|
| 2782 |
+
},
|
| 2783 |
+
{
|
| 2784 |
+
"epoch": 1.8499534016775396,
|
| 2785 |
+
"grad_norm": 0.262592387958415,
|
| 2786 |
+
"learning_rate": 2.129789437348982e-05,
|
| 2787 |
+
"loss": 0.3402,
|
| 2788 |
+
"step": 1985
|
| 2789 |
+
},
|
| 2790 |
+
{
|
| 2791 |
+
"epoch": 1.8546132339235788,
|
| 2792 |
+
"grad_norm": 0.26273462103083123,
|
| 2793 |
+
"learning_rate": 2.1211598205039697e-05,
|
| 2794 |
+
"loss": 0.359,
|
| 2795 |
+
"step": 1990
|
| 2796 |
+
},
|
| 2797 |
+
{
|
| 2798 |
+
"epoch": 1.8592730661696177,
|
| 2799 |
+
"grad_norm": 0.3053599234753911,
|
| 2800 |
+
"learning_rate": 2.1125302036589575e-05,
|
| 2801 |
+
"loss": 0.3447,
|
| 2802 |
+
"step": 1995
|
| 2803 |
+
},
|
| 2804 |
+
{
|
| 2805 |
+
"epoch": 1.8639328984156571,
|
| 2806 |
+
"grad_norm": 0.3059994674979238,
|
| 2807 |
+
"learning_rate": 2.1039005868139457e-05,
|
| 2808 |
+
"loss": 0.3435,
|
| 2809 |
+
"step": 2000
|
| 2810 |
+
},
|
| 2811 |
+
{
|
| 2812 |
+
"epoch": 1.868592730661696,
|
| 2813 |
+
"grad_norm": 0.2607025246378089,
|
| 2814 |
+
"learning_rate": 2.0952709699689335e-05,
|
| 2815 |
+
"loss": 0.3373,
|
| 2816 |
+
"step": 2005
|
| 2817 |
+
},
|
| 2818 |
+
{
|
| 2819 |
+
"epoch": 1.8732525629077355,
|
| 2820 |
+
"grad_norm": 0.2861430471124999,
|
| 2821 |
+
"learning_rate": 2.0866413531239216e-05,
|
| 2822 |
+
"loss": 0.3526,
|
| 2823 |
+
"step": 2010
|
| 2824 |
+
},
|
| 2825 |
+
{
|
| 2826 |
+
"epoch": 1.8779123951537744,
|
| 2827 |
+
"grad_norm": 0.2763097244154725,
|
| 2828 |
+
"learning_rate": 2.078011736278909e-05,
|
| 2829 |
+
"loss": 0.3385,
|
| 2830 |
+
"step": 2015
|
| 2831 |
+
},
|
| 2832 |
+
{
|
| 2833 |
+
"epoch": 1.8825722273998136,
|
| 2834 |
+
"grad_norm": 0.2799447185424882,
|
| 2835 |
+
"learning_rate": 2.0693821194338973e-05,
|
| 2836 |
+
"loss": 0.3336,
|
| 2837 |
+
"step": 2020
|
| 2838 |
+
},
|
| 2839 |
+
{
|
| 2840 |
+
"epoch": 1.8872320596458527,
|
| 2841 |
+
"grad_norm": 0.29217744619685787,
|
| 2842 |
+
"learning_rate": 2.060752502588885e-05,
|
| 2843 |
+
"loss": 0.3397,
|
| 2844 |
+
"step": 2025
|
| 2845 |
+
},
|
| 2846 |
+
{
|
| 2847 |
+
"epoch": 1.8918918918918919,
|
| 2848 |
+
"grad_norm": 0.2369462013013538,
|
| 2849 |
+
"learning_rate": 2.0521228857438733e-05,
|
| 2850 |
+
"loss": 0.3465,
|
| 2851 |
+
"step": 2030
|
| 2852 |
+
},
|
| 2853 |
+
{
|
| 2854 |
+
"epoch": 1.896551724137931,
|
| 2855 |
+
"grad_norm": 0.2606923519015433,
|
| 2856 |
+
"learning_rate": 2.0434932688988608e-05,
|
| 2857 |
+
"loss": 0.3398,
|
| 2858 |
+
"step": 2035
|
| 2859 |
+
},
|
| 2860 |
+
{
|
| 2861 |
+
"epoch": 1.9012115563839702,
|
| 2862 |
+
"grad_norm": 0.24433561937288362,
|
| 2863 |
+
"learning_rate": 2.034863652053849e-05,
|
| 2864 |
+
"loss": 0.3426,
|
| 2865 |
+
"step": 2040
|
| 2866 |
+
},
|
| 2867 |
+
{
|
| 2868 |
+
"epoch": 1.9058713886300094,
|
| 2869 |
+
"grad_norm": 0.24027186205793663,
|
| 2870 |
+
"learning_rate": 2.0262340352088367e-05,
|
| 2871 |
+
"loss": 0.3583,
|
| 2872 |
+
"step": 2045
|
| 2873 |
+
},
|
| 2874 |
+
{
|
| 2875 |
+
"epoch": 1.9105312208760483,
|
| 2876 |
+
"grad_norm": 0.2963338411565495,
|
| 2877 |
+
"learning_rate": 2.017604418363825e-05,
|
| 2878 |
+
"loss": 0.3487,
|
| 2879 |
+
"step": 2050
|
| 2880 |
+
},
|
| 2881 |
+
{
|
| 2882 |
+
"epoch": 1.9151910531220877,
|
| 2883 |
+
"grad_norm": 0.30407493721122836,
|
| 2884 |
+
"learning_rate": 2.0089748015188127e-05,
|
| 2885 |
+
"loss": 0.3431,
|
| 2886 |
+
"step": 2055
|
| 2887 |
+
},
|
| 2888 |
+
{
|
| 2889 |
+
"epoch": 1.9198508853681266,
|
| 2890 |
+
"grad_norm": 0.25578502398702385,
|
| 2891 |
+
"learning_rate": 2.0003451846738005e-05,
|
| 2892 |
+
"loss": 0.3509,
|
| 2893 |
+
"step": 2060
|
| 2894 |
+
},
|
| 2895 |
+
{
|
| 2896 |
+
"epoch": 1.924510717614166,
|
| 2897 |
+
"grad_norm": 0.29666053905207496,
|
| 2898 |
+
"learning_rate": 1.9917155678287887e-05,
|
| 2899 |
+
"loss": 0.3402,
|
| 2900 |
+
"step": 2065
|
| 2901 |
+
},
|
| 2902 |
+
{
|
| 2903 |
+
"epoch": 1.929170549860205,
|
| 2904 |
+
"grad_norm": 0.256717876732163,
|
| 2905 |
+
"learning_rate": 1.9830859509837765e-05,
|
| 2906 |
+
"loss": 0.3474,
|
| 2907 |
+
"step": 2070
|
| 2908 |
+
},
|
| 2909 |
+
{
|
| 2910 |
+
"epoch": 1.9338303821062441,
|
| 2911 |
+
"grad_norm": 0.2583678936422422,
|
| 2912 |
+
"learning_rate": 1.9744563341387643e-05,
|
| 2913 |
+
"loss": 0.3491,
|
| 2914 |
+
"step": 2075
|
| 2915 |
+
},
|
| 2916 |
+
{
|
| 2917 |
+
"epoch": 1.9384902143522833,
|
| 2918 |
+
"grad_norm": 0.2950508942608553,
|
| 2919 |
+
"learning_rate": 1.9658267172937522e-05,
|
| 2920 |
+
"loss": 0.3441,
|
| 2921 |
+
"step": 2080
|
| 2922 |
+
},
|
| 2923 |
+
{
|
| 2924 |
+
"epoch": 1.9431500465983225,
|
| 2925 |
+
"grad_norm": 0.36955576638078624,
|
| 2926 |
+
"learning_rate": 1.9571971004487403e-05,
|
| 2927 |
+
"loss": 0.3438,
|
| 2928 |
+
"step": 2085
|
| 2929 |
+
},
|
| 2930 |
+
{
|
| 2931 |
+
"epoch": 1.9478098788443616,
|
| 2932 |
+
"grad_norm": 0.3035648067236326,
|
| 2933 |
+
"learning_rate": 1.948567483603728e-05,
|
| 2934 |
+
"loss": 0.3498,
|
| 2935 |
+
"step": 2090
|
| 2936 |
+
},
|
| 2937 |
+
{
|
| 2938 |
+
"epoch": 1.9524697110904008,
|
| 2939 |
+
"grad_norm": 0.3134746870815898,
|
| 2940 |
+
"learning_rate": 1.939937866758716e-05,
|
| 2941 |
+
"loss": 0.3321,
|
| 2942 |
+
"step": 2095
|
| 2943 |
+
},
|
| 2944 |
+
{
|
| 2945 |
+
"epoch": 1.95712954333644,
|
| 2946 |
+
"grad_norm": 0.33205293171672917,
|
| 2947 |
+
"learning_rate": 1.9313082499137038e-05,
|
| 2948 |
+
"loss": 0.3493,
|
| 2949 |
+
"step": 2100
|
| 2950 |
+
},
|
| 2951 |
+
{
|
| 2952 |
+
"epoch": 1.961789375582479,
|
| 2953 |
+
"grad_norm": 0.3166250804073325,
|
| 2954 |
+
"learning_rate": 1.922678633068692e-05,
|
| 2955 |
+
"loss": 0.3439,
|
| 2956 |
+
"step": 2105
|
| 2957 |
+
},
|
| 2958 |
+
{
|
| 2959 |
+
"epoch": 1.9664492078285183,
|
| 2960 |
+
"grad_norm": 0.2735011532790032,
|
| 2961 |
+
"learning_rate": 1.9140490162236798e-05,
|
| 2962 |
+
"loss": 0.3493,
|
| 2963 |
+
"step": 2110
|
| 2964 |
+
},
|
| 2965 |
+
{
|
| 2966 |
+
"epoch": 1.9711090400745572,
|
| 2967 |
+
"grad_norm": 0.27483640823140315,
|
| 2968 |
+
"learning_rate": 1.9054193993786676e-05,
|
| 2969 |
+
"loss": 0.3565,
|
| 2970 |
+
"step": 2115
|
| 2971 |
+
},
|
| 2972 |
+
{
|
| 2973 |
+
"epoch": 1.9757688723205966,
|
| 2974 |
+
"grad_norm": 0.2528402059369525,
|
| 2975 |
+
"learning_rate": 1.8967897825336554e-05,
|
| 2976 |
+
"loss": 0.3444,
|
| 2977 |
+
"step": 2120
|
| 2978 |
+
},
|
| 2979 |
+
{
|
| 2980 |
+
"epoch": 1.9804287045666356,
|
| 2981 |
+
"grad_norm": 0.24447651503450293,
|
| 2982 |
+
"learning_rate": 1.8881601656886436e-05,
|
| 2983 |
+
"loss": 0.3418,
|
| 2984 |
+
"step": 2125
|
| 2985 |
+
},
|
| 2986 |
+
{
|
| 2987 |
+
"epoch": 1.9850885368126747,
|
| 2988 |
+
"grad_norm": 0.2661148510991396,
|
| 2989 |
+
"learning_rate": 1.8795305488436314e-05,
|
| 2990 |
+
"loss": 0.3458,
|
| 2991 |
+
"step": 2130
|
| 2992 |
+
},
|
| 2993 |
+
{
|
| 2994 |
+
"epoch": 1.9897483690587139,
|
| 2995 |
+
"grad_norm": 0.3215277813688595,
|
| 2996 |
+
"learning_rate": 1.8709009319986192e-05,
|
| 2997 |
+
"loss": 0.3342,
|
| 2998 |
+
"step": 2135
|
| 2999 |
+
},
|
| 3000 |
+
{
|
| 3001 |
+
"epoch": 1.994408201304753,
|
| 3002 |
+
"grad_norm": 0.28210057507380515,
|
| 3003 |
+
"learning_rate": 1.8622713151536074e-05,
|
| 3004 |
+
"loss": 0.3411,
|
| 3005 |
+
"step": 2140
|
| 3006 |
+
},
|
| 3007 |
+
{
|
| 3008 |
+
"epoch": 1.9990680335507922,
|
| 3009 |
+
"grad_norm": 0.24421351565362545,
|
| 3010 |
+
"learning_rate": 1.8536416983085952e-05,
|
| 3011 |
+
"loss": 0.3459,
|
| 3012 |
+
"step": 2145
|
| 3013 |
+
},
|
| 3014 |
+
{
|
| 3015 |
+
"epoch": 2.003727865796831,
|
| 3016 |
+
"grad_norm": 0.27803726882878427,
|
| 3017 |
+
"learning_rate": 1.8450120814635834e-05,
|
| 3018 |
+
"loss": 0.284,
|
| 3019 |
+
"step": 2150
|
| 3020 |
+
},
|
| 3021 |
+
{
|
| 3022 |
+
"epoch": 2.0083876980428705,
|
| 3023 |
+
"grad_norm": 0.289132512553544,
|
| 3024 |
+
"learning_rate": 1.836382464618571e-05,
|
| 3025 |
+
"loss": 0.2864,
|
| 3026 |
+
"step": 2155
|
| 3027 |
+
},
|
| 3028 |
+
{
|
| 3029 |
+
"epoch": 2.0130475302889095,
|
| 3030 |
+
"grad_norm": 0.2620365826195705,
|
| 3031 |
+
"learning_rate": 1.827752847773559e-05,
|
| 3032 |
+
"loss": 0.2802,
|
| 3033 |
+
"step": 2160
|
| 3034 |
+
},
|
| 3035 |
+
{
|
| 3036 |
+
"epoch": 2.017707362534949,
|
| 3037 |
+
"grad_norm": 0.267513690683278,
|
| 3038 |
+
"learning_rate": 1.819123230928547e-05,
|
| 3039 |
+
"loss": 0.2827,
|
| 3040 |
+
"step": 2165
|
| 3041 |
+
},
|
| 3042 |
+
{
|
| 3043 |
+
"epoch": 2.022367194780988,
|
| 3044 |
+
"grad_norm": 0.24650696041571432,
|
| 3045 |
+
"learning_rate": 1.810493614083535e-05,
|
| 3046 |
+
"loss": 0.282,
|
| 3047 |
+
"step": 2170
|
| 3048 |
+
},
|
| 3049 |
+
{
|
| 3050 |
+
"epoch": 2.027027027027027,
|
| 3051 |
+
"grad_norm": 0.23594499949396758,
|
| 3052 |
+
"learning_rate": 1.8018639972385225e-05,
|
| 3053 |
+
"loss": 0.2769,
|
| 3054 |
+
"step": 2175
|
| 3055 |
+
},
|
| 3056 |
+
{
|
| 3057 |
+
"epoch": 2.031686859273066,
|
| 3058 |
+
"grad_norm": 0.25002507657849443,
|
| 3059 |
+
"learning_rate": 1.7932343803935107e-05,
|
| 3060 |
+
"loss": 0.2817,
|
| 3061 |
+
"step": 2180
|
| 3062 |
+
},
|
| 3063 |
+
{
|
| 3064 |
+
"epoch": 2.0363466915191055,
|
| 3065 |
+
"grad_norm": 0.2421805814272178,
|
| 3066 |
+
"learning_rate": 1.7846047635484985e-05,
|
| 3067 |
+
"loss": 0.2781,
|
| 3068 |
+
"step": 2185
|
| 3069 |
+
},
|
| 3070 |
+
{
|
| 3071 |
+
"epoch": 2.0410065237651445,
|
| 3072 |
+
"grad_norm": 0.2446711558000852,
|
| 3073 |
+
"learning_rate": 1.7759751467034866e-05,
|
| 3074 |
+
"loss": 0.2782,
|
| 3075 |
+
"step": 2190
|
| 3076 |
+
},
|
| 3077 |
+
{
|
| 3078 |
+
"epoch": 2.0456663560111834,
|
| 3079 |
+
"grad_norm": 0.2893143893353549,
|
| 3080 |
+
"learning_rate": 1.767345529858474e-05,
|
| 3081 |
+
"loss": 0.2881,
|
| 3082 |
+
"step": 2195
|
| 3083 |
+
},
|
| 3084 |
+
{
|
| 3085 |
+
"epoch": 2.050326188257223,
|
| 3086 |
+
"grad_norm": 0.2361572137636827,
|
| 3087 |
+
"learning_rate": 1.7587159130134623e-05,
|
| 3088 |
+
"loss": 0.2879,
|
| 3089 |
+
"step": 2200
|
| 3090 |
+
}
|
| 3091 |
+
],
|
| 3092 |
+
"logging_steps": 5,
|
| 3093 |
+
"max_steps": 3219,
|
| 3094 |
+
"num_input_tokens_seen": 0,
|
| 3095 |
+
"num_train_epochs": 3,
|
| 3096 |
+
"save_steps": 550,
|
| 3097 |
+
"stateful_callbacks": {
|
| 3098 |
+
"TrainerControl": {
|
| 3099 |
+
"args": {
|
| 3100 |
+
"should_epoch_stop": false,
|
| 3101 |
+
"should_evaluate": false,
|
| 3102 |
+
"should_log": false,
|
| 3103 |
+
"should_save": true,
|
| 3104 |
+
"should_training_stop": false
|
| 3105 |
+
},
|
| 3106 |
+
"attributes": {}
|
| 3107 |
+
}
|
| 3108 |
+
},
|
| 3109 |
+
"total_flos": 1.8830647294511022e+18,
|
| 3110 |
+
"train_batch_size": 1,
|
| 3111 |
+
"trial_name": null,
|
| 3112 |
+
"trial_params": null
|
| 3113 |
+
}
|
checkpoint-2200/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:813a77be1c465ef5e10e4edc1f2885fd2a8dd215211b3e931e4d041d82d8bcec
|
| 3 |
+
size 7480
|
checkpoint-2200/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2200/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|