abdoelsayed commited on
Commit
3ebb096
Β·
verified Β·
1 Parent(s): 0910266

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +276 -188
README.md CHANGED
@@ -1,202 +1,290 @@
1
  ---
2
- base_model: meta-llama/Llama-3.2-3B
 
 
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.13.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ license: mit
5
  library_name: peft
6
+ tags:
7
+ - reranking
8
+ - information-retrieval
9
+ - pointwise
10
+ - lora
11
+ - peft
12
+ - efficient
13
+ - ranknet
14
+ base_model: meta-llama/Llama-3.2-3B
15
+ datasets:
16
+ - Tevatron/msmarco-passage
17
+ - abdoelsayed/DeAR-COT
18
+ pipeline_tag: text-classification
19
  ---
20
 
21
+ # DeAR-3B-Reranker-RankNet-LoRA-v1
 
 
22
 
23
+ ## Model Description
24
 
25
+ **DeAR-3B-Reranker-RankNet-LoRA-v1** is a LoRA adapter for the most efficient reranker in the DeAR family. This ultra-lightweight adapter (~40MB) achieves fast inference speeds while maintaining competitive accuracy, making it ideal for resource-constrained production environments.
26
 
27
  ## Model Details
28
 
29
+ - **Model Type:** LoRA Adapter for Pointwise Reranking
30
+ - **Base Model:** meta-llama/Llama-3.2-3B
31
+ - **Adapter Size:** ~40MB
32
+ - **Training Method:** LoRA with RankNet Loss + Knowledge Distillation
33
+ - **LoRA Rank:** 16
34
+ - **LoRA Alpha:** 32
35
+ - **Trainable Parameters:** 25M (0.8% of total)
36
+
37
+ ## Key Features
38
+
39
+ βœ… **Ultra Lightweight:** Only 40MB storage
40
+ βœ… **Fastest Inference:** 1.5s for 100 documents
41
+ βœ… **Memory Efficient:** 10GB GPU for inference
42
+ βœ… **Easy Deployment:** Quick adapter loading
43
+ βœ… **Cost Effective:** Minimal compute requirements
44
+
45
+
46
+
47
+
48
+ ## Usage
49
+
50
+ ### Load and Use
51
+
52
+ ```python
53
+ import torch
54
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
55
+ from peft import PeftModel, PeftConfig
56
+
57
+ # Load LoRA adapter
58
+ adapter_path = "abdoelsayed/dear-3b-reranker-ranknet-lora-v1"
59
+ config = PeftConfig.from_pretrained(adapter_path)
60
+
61
+ # Load tokenizer
62
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
63
+ if tokenizer.pad_token is None:
64
+ tokenizer.pad_token = tokenizer.eos_token
65
+
66
+ # Load base model
67
+ base_model = AutoModelForSequenceClassification.from_pretrained(
68
+ config.base_model_name_or_path,
69
+ num_labels=1,
70
+ torch_dtype=torch.bfloat16
71
+ )
72
+
73
+ # Load and merge LoRA
74
+ model = PeftModel.from_pretrained(base_model, adapter_path)
75
+ model = model.merge_and_unload()
76
+ model.eval().cuda()
77
+
78
+ # Use model
79
+ query = "What is machine learning?"
80
+ document = "Machine learning is a subset of artificial intelligence..."
81
+
82
+ inputs = tokenizer(
83
+ f"query: {query}",
84
+ f"document: {document}",
85
+ return_tensors="pt",
86
+ truncation=True,
87
+ max_length=228,
88
+ padding="max_length"
89
+ )
90
+ inputs = {k: v.cuda() for k, v in inputs.items()}
91
+
92
+ with torch.no_grad():
93
+ score = model(**inputs).logits.squeeze().item()
94
+ print(f"Relevance score: {score}")
95
+ ```
96
+
97
+ ### Helper Function
98
+
99
+ ```python
100
+ from typing import List, Tuple
101
+
102
+ def load_3b_lora_ranker(adapter_path: str):
103
+ """Load 3B LoRA adapter efficiently."""
104
+ config = PeftConfig.from_pretrained(adapter_path)
105
+
106
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
107
+ if tokenizer.pad_token is None:
108
+ tokenizer.pad_token = tokenizer.eos_token
109
+
110
+ base = AutoModelForSequenceClassification.from_pretrained(
111
+ config.base_model_name_or_path,
112
+ num_labels=1,
113
+ torch_dtype=torch.bfloat16
114
+ )
115
+
116
+ model = PeftModel.from_pretrained(base, adapter_path)
117
+ model = model.merge_and_unload()
118
+ model.eval().cuda()
119
+
120
+ return tokenizer, model
121
+
122
+ # Load once
123
+ tokenizer, model = load_3b_lora_ranker("abdoelsayed/dear-3b-reranker-ranknet-lora-v1")
124
+
125
+ # Rerank function
126
+ @torch.inference_mode()
127
+ def rerank(tokenizer, model, query: str, docs: List[Tuple[str, str]], batch_size=128):
128
+ scores = []
129
+ device = next(model.parameters()).device
130
+
131
+ for i in range(0, len(docs), batch_size):
132
+ batch = docs[i:i + batch_size]
133
+ queries = [f"query: {query}"] * len(batch)
134
+ documents = [f"document: {t} {p}" for t, p in batch]
135
+
136
+ inputs = tokenizer(queries, documents, return_tensors="pt",
137
+ truncation=True, max_length=228, padding=True)
138
+ inputs = {k: v.to(device) for k, v in inputs.items()}
139
+
140
+ logits = model(**inputs).logits.squeeze(-1)
141
+ scores.extend(logits.cpu().tolist())
142
+
143
+ return sorted(enumerate(scores), key=lambda x: x[1], reverse=True)
144
+ ```
145
 
146
  ## Training Details
147
 
148
+ ### LoRA Configuration
149
+ ```python
150
+ {
151
+ "r": 16,
152
+ "lora_alpha": 32,
153
+ "target_modules": [
154
+ "q_proj", "v_proj", "k_proj", "o_proj",
155
+ "gate_proj", "up_proj", "down_proj"
156
+ ],
157
+ "lora_dropout": 0.05,
158
+ "bias": "none",
159
+ "task_type": "SEQ_CLS"
160
+ }
161
+ ```
162
+
163
+ ### Training Hyperparameters
164
+ - **Learning Rate:** 1e-4
165
+ - **Batch Size:** 8 (larger due to lower memory)
166
+ - **Gradient Accumulation:** 2
167
+ - **Epochs:** 2
168
+ - **Hardware:** 4x A100 (40GB)
169
+ - **Training Time:** ~6 hours (3x faster than full)
170
+ - **Memory:** ~18GB per GPU
171
+
172
+
173
+
174
+ ## Efficiency Comparison
175
+
176
+ ### Storage Efficiency
177
+ ```
178
+ LoRA Adapter: 40MB
179
+ Full 3B Model: 6GB
180
+ Full 8B Model: 16GB
181
+ Ratio: 0.67% of 3B, 0.25% of 8B
182
+ ```
183
+
184
+ ### Inference Speed
185
+ ```
186
+ 3B LoRA: 1.5s (100 docs)
187
+ 8B Full: 2.2s (100 docs)
188
+ Speedup: 1.47x faster than 8B
189
+ ```
190
+
191
+ ### Memory Usage
192
+ ```
193
+ 3B LoRA: 10GB GPU
194
+ 3B Full: 12GB GPU
195
+ 8B Full: 18GB GPU
196
+ ```
197
+
198
+ ## When to Use
199
+
200
+ **Best for:**
201
+ - βœ… Extreme resource constraints
202
+ - βœ… Multiple domain-specific versions
203
+ - βœ… Fast iteration cycles
204
+ - βœ… Edge deployment
205
+ - βœ… Maximum throughput
206
+
207
+ **Use full 3B for:**
208
+ - ❌ Slightly better accuracy needed
209
+ - ❌ No storage constraints
210
+
211
+ **Use 8B for:**
212
+ - ❌ +3 NDCG@10 accuracy gain needed
213
+
214
+ ## Deployment Example
215
+
216
+ ```python
217
+ # Minimal memory deployment
218
+ import torch
219
+ from transformers import AutoModelForSequenceClassification
220
+ from peft import PeftModel
221
+
222
+ adapter_path = "abdoelsayed/dear-3b-reranker-ranknet-lora-v1"
223
+
224
+ # Load with memory optimization
225
+ model = AutoModelForSequenceClassification.from_pretrained(
226
+ "meta-llama/Llama-3.2-3B",
227
+ num_labels=1,
228
+ torch_dtype=torch.bfloat16,
229
+ device_map="auto",
230
+ low_cpu_mem_usage=True
231
+ )
232
+
233
+ # Load adapter
234
+ model = PeftModel.from_pretrained(model, adapter_path)
235
+ model = model.merge_and_unload()
236
+ model.eval()
237
+
238
+ # Optional: Compile for speedup
239
+ if hasattr(torch, 'compile'):
240
+ model = torch.compile(model, mode="max-autotune")
241
+ ```
242
+
243
+ ## Performance vs Size
244
+
245
+ ```
246
+ Model Size vs NDCG@10 (TREC DL19):
247
+ β”œβ”€ Teacher-13B: 73.8 (26GB)
248
+ β”œβ”€ DeAR-8B-Full: 74.5 (16GB)
249
+ β”œβ”€ DeAR-8B-LoRA: 74.2 (100MB + base)
250
+ β”œβ”€ DeAR-3B-Full: 71.2 (6GB)
251
+ └─ DeAR-3B-LoRA: 70.9 (40MB + base) ← This model
252
+
253
+ Best Efficiency: 95% accuracy at 0.25% size of 8B!
254
+ ```
255
+
256
+ ## Related Models
257
+
258
+ **Full Version:**
259
+ - [DeAR-3B-RankNet](https://huggingface.co/abdoelsayed/dear-3b-reranker-ranknet-v1)
260
+
261
+ **Same Size (3B):**
262
+ - [DeAR-3B-CE-LoRA](https://huggingface.co/abdoelsayed/dear-3b-reranker-ce-lora-v1)
263
+
264
+ **Larger (8B):**
265
+ - [DeAR-8B-RankNet-LoRA](https://huggingface.co/abdoelsayed/dear-8b-reranker-ranknet-lora-v1)
266
+
267
+ **Resources:**
268
+ - [DeAR-COT Dataset](https://huggingface.co/datasets/abdoelsayed/DeAR-COT)
269
+ - [Teacher Model](https://huggingface.co/abdoelsayed/llama2-13b-rankllama-teacher)
270
 
271
+ ## Citation
 
272
 
273
+ ```bibtex
274
+ @article{abdallah2025dear,
275
+ title={DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation},
276
+ author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Jatowt, Adam},
277
+ journal={arXiv preprint arXiv:2508.16998},
278
+ year={2025}
279
+ }
280
+ ```
281
+
282
+ ## License
283
+
284
+ MIT License
285
+
286
+ ## More Information
287
+
288
+ - **GitHub:** [DataScienceUIBK/DeAR-Reranking](https://github.com/DataScienceUIBK/DeAR-Reranking)
289
+ - **Paper:** [arXiv:2508.16998](https://arxiv.org/abs/2508.16998)
290
+ - **Collection:** [DeAR Models](https://huggingface.co/collections/abdoelsayed/dear-reranking)