File size: 2,546 Bytes
d48d608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: mit
base_model: intfloat/e5-large-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: intfloat-e5-large-v2-english-fp16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# intfloat-e5-large-v2-english-fp16

This model is a fine-tuned version of [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2999
- Accuracy: 0.8919
- Precision: 0.8922
- Recall: 0.8919
- F1: 0.8905

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.0668        | 0.3922 | 50   | 0.9147          | 0.5648   | 0.6855    | 0.5648 | 0.4637 |
| 0.6872        | 0.7843 | 100  | 0.4339          | 0.8384   | 0.8374    | 0.8384 | 0.8369 |
| 0.3677        | 1.1725 | 150  | 0.3228          | 0.8802   | 0.8803    | 0.8802 | 0.8800 |
| 0.2966        | 1.5647 | 200  | 0.3345          | 0.8816   | 0.8827    | 0.8816 | 0.8798 |
| 0.3005        | 1.9569 | 250  | 0.3261          | 0.8762   | 0.8806    | 0.8762 | 0.8728 |
| 0.2175        | 2.3451 | 300  | 0.2999          | 0.8919   | 0.8922    | 0.8919 | 0.8905 |
| 0.2136        | 2.7373 | 350  | 0.3109          | 0.8846   | 0.8856    | 0.8846 | 0.8850 |
| 0.1841        | 3.1255 | 400  | 0.3765          | 0.8821   | 0.8824    | 0.8821 | 0.8818 |
| 0.1327        | 3.5176 | 450  | 0.3523          | 0.8900   | 0.8900    | 0.8900 | 0.8900 |


### Framework versions

- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1