diff --git "a/README.md" "b/README.md"
new file mode 100644--- /dev/null
+++ "b/README.md"
@@ -0,0 +1,1522 @@
+---
+language:
+- en
+tags:
+- ColBERT
+- PyLate
+- sentence-transformers
+- sentence-similarity
+- feature-extraction
+- generated_from_trainer
+- dataset_size:533177
+- loss:Distillation
+base_model: jhu-clsp/ettin-encoder-17m
+datasets:
+- lightonai/ms-marco-en-bge-gemma
+pipeline_tag: sentence-similarity
+library_name: PyLate
+metrics:
+- MaxSim_accuracy@1
+- MaxSim_accuracy@3
+- MaxSim_accuracy@5
+- MaxSim_accuracy@10
+- MaxSim_precision@1
+- MaxSim_precision@3
+- MaxSim_precision@5
+- MaxSim_precision@10
+- MaxSim_recall@1
+- MaxSim_recall@3
+- MaxSim_recall@5
+- MaxSim_recall@10
+- MaxSim_ndcg@10
+- MaxSim_mrr@10
+- MaxSim_map@100
+model-index:
+- name: PyLate model based on jhu-clsp/ettin-encoder-17m
+ results:
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoClimateFEVER
+ type: NanoClimateFEVER
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.26
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.44
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.48
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.72
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.26
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.1733333333333333
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.12000000000000002
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.102
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.11999999999999998
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.23
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.25666666666666665
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.3999999999999999
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.30588764137829927
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.38180158730158725
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.23047723328383551
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoDBPedia
+ type: NanoDBPedia
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.72
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.86
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.9
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.94
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.72
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.6066666666666667
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.5720000000000001
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.49
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.08124424335875133
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.1639789174109182
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2286688535902389
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.3339202593691046
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5943825623026429
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.7955555555555555
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.47610983586026223
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoFEVER
+ type: NanoFEVER
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.84
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.94
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.96
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.98
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.84
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.33333333333333326
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.20799999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.10599999999999998
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.7766666666666667
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.9033333333333333
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.93
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.95
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.8863719088415238
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.8903333333333333
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8591045425163073
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoFiQA2018
+ type: NanoFiQA2018
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.42
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.6
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.72
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.76
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.42
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.26666666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.22799999999999998
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.14
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.21591269841269842
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.35584920634920636
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.4972857142857143
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.5840079365079365
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.4728764591299225
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.5343571428571429
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.3849491712909313
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoHotpotQA
+ type: NanoHotpotQA
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.92
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.98
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.92
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.54
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.3399999999999999
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.17999999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.46
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.81
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.85
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.9
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.8633780841984157
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9506666666666667
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8068729210481762
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoMSMARCO
+ type: NanoMSMARCO
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.5
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.66
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.68
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.78
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.5
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.22
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.136
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.07800000000000001
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.5
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.66
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.68
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.78
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.6350694238626255
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.5893809523809523
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.6008352347387884
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoNFCorpus
+ type: NanoNFCorpus
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.4
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.52
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.58
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.68
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.4
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.34
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.32
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.28
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.033468066221703355
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.07710152452729603
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.09567130100917189
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.14399069709040951
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.33024968480063904
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.47657936507936505
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.14186780303718874
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoNQ
+ type: NanoNQ
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.54
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.76
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.8
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.84
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.54
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.25333333333333335
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.16799999999999998
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.09
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.51
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.7
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.76
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.81
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.6699201254277886
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6447222222222222
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.62006789085707
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoQuoraRetrieval
+ type: NanoQuoraRetrieval
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.82
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.96
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.82
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.38666666666666655
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.244
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.12799999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.7340000000000001
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.912
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.956
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.9726666666666668
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.9086308248836141
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8813997853997853
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoSCIDOCS
+ type: NanoSCIDOCS
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.42
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.6
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.66
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.74
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.42
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.2866666666666667
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.22399999999999995
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.15
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.08666666666666666
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.17666666666666664
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2286666666666666
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.30666666666666664
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.31422844901617714
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.5303571428571429
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.24770788410611272
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoArguAna
+ type: NanoArguAna
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.2
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.48
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.64
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.76
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.2
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.15999999999999998
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.128
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.07600000000000001
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.2
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.48
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.64
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.76
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.45449277481893957
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.3582460317460317
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.36532756317756315
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoSciFact
+ type: NanoSciFact
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.6
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.76
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.82
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.88
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.6
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.26666666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.18
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.09799999999999999
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.575
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.74
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.815
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.87
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.7356545211627262
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6952222222222221
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.691199074074074
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoTouche2020
+ type: NanoTouche2020
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.6938775510204082
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.9183673469387755
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.9591836734693877
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.6938775510204082
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.6394557823129251
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.636734693877551
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.49387755102040815
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.04942817268713302
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.13043451476387394
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2136324859904483
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.3155916739971445
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5612872974984163
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.8085519922254615
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.41548604773283626
+ name: Maxsim Map@100
+ - task:
+ type: nano-beir
+ name: Nano BEIR
+ dataset:
+ name: NanoBEIR mean
+ type: NanoBEIR_mean
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.5641444270015699
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.729105180533752
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.7845525902668761
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.8523076923076923
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.5641444270015699
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.34406070120355836
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.26959497645211933
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.18552904238618523
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.3340297318472015
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.487643397157792
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.5501224375545312
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.6251418384844561
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5948022890247485
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6581364780344372
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.5170311528556101
+ name: Maxsim Map@100
+---
+
+# PyLate model based on jhu-clsp/ettin-encoder-17m
+
+This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [ms-marco-en-bge-gemma](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
+
+## Model Details
+
+### Model Description
+- **Model Type:** PyLate model
+- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m)
+- **Document Length:** 300 tokens
+- **Query Length:** 32 tokens
+- **Output Dimensionality:** 128 tokens
+- **Similarity Function:** MaxSim
+- **Training Dataset:**
+ - [ms-marco-en-bge-gemma](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma)
+- **Language:** en
+
+
+### Model Sources
+
+- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
+- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
+- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
+
+### Full Model Architecture
+
+```
+ColBERT(
+ (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: ModernBertModel
+ (1): Dense({'in_features': 256, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
+)
+```
+
+## Usage
+First install the PyLate library:
+
+```bash
+pip install -U pylate
+```
+
+### Retrieval
+
+PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
+
+#### Indexing documents
+
+First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
+
+```python
+from pylate import indexes, models, retrieve
+
+# Step 1: Load the ColBERT model
+model = models.ColBERT(
+ model_name_or_path=pylate_model_id,
+)
+
+# Step 2: Initialize the Voyager index
+index = indexes.Voyager(
+ index_folder="pylate-index",
+ index_name="index",
+ override=True, # This overwrites the existing index if any
+)
+
+# Step 3: Encode the documents
+documents_ids = ["1", "2", "3"]
+documents = ["document 1 text", "document 2 text", "document 3 text"]
+
+documents_embeddings = model.encode(
+ documents,
+ batch_size=32,
+ is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
+ show_progress_bar=True,
+)
+
+# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
+index.add_documents(
+ documents_ids=documents_ids,
+ documents_embeddings=documents_embeddings,
+)
+```
+
+Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
+
+```python
+# To load an index, simply instantiate it with the correct folder/name and without overriding it
+index = indexes.Voyager(
+ index_folder="pylate-index",
+ index_name="index",
+)
+```
+
+#### Retrieving top-k documents for queries
+
+Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
+To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
+
+```python
+# Step 1: Initialize the ColBERT retriever
+retriever = retrieve.ColBERT(index=index)
+
+# Step 2: Encode the queries
+queries_embeddings = model.encode(
+ ["query for document 3", "query for document 1"],
+ batch_size=32,
+ is_query=True, # # Ensure that it is set to False to indicate that these are queries
+ show_progress_bar=True,
+)
+
+# Step 3: Retrieve top-k documents
+scores = retriever.retrieve(
+ queries_embeddings=queries_embeddings,
+ k=10, # Retrieve the top 10 matches for each query
+)
+```
+
+### Reranking
+If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
+
+```python
+from pylate import rank, models
+
+queries = [
+ "query A",
+ "query B",
+]
+
+documents = [
+ ["document A", "document B"],
+ ["document 1", "document C", "document B"],
+]
+
+documents_ids = [
+ [1, 2],
+ [1, 3, 2],
+]
+
+model = models.ColBERT(
+ model_name_or_path=pylate_model_id,
+)
+
+queries_embeddings = model.encode(
+ queries,
+ is_query=True,
+)
+
+documents_embeddings = model.encode(
+ documents,
+ is_query=False,
+)
+
+reranked_documents = rank.rerank(
+ documents_ids=documents_ids,
+ queries_embeddings=queries_embeddings,
+ documents_embeddings=documents_embeddings,
+)
+```
+
+
+
+
+
+
+
+## Evaluation
+
+### Metrics
+
+#### Py Late Information Retrieval
+* Dataset: `['NanoClimateFEVER', 'NanoDBPedia', 'NanoFEVER', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNFCorpus', 'NanoNQ', 'NanoQuoraRetrieval', 'NanoSCIDOCS', 'NanoArguAna', 'NanoSciFact', 'NanoTouche2020']`
+* Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
+
+| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
+|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
+| MaxSim_accuracy@1 | 0.26 | 0.72 | 0.84 | 0.42 | 0.92 | 0.5 | 0.4 | 0.54 | 0.82 | 0.42 | 0.2 | 0.6 | 0.6939 |
+| MaxSim_accuracy@3 | 0.44 | 0.86 | 0.94 | 0.6 | 0.98 | 0.66 | 0.52 | 0.76 | 0.96 | 0.6 | 0.48 | 0.76 | 0.9184 |
+| MaxSim_accuracy@5 | 0.48 | 0.9 | 0.96 | 0.72 | 1.0 | 0.68 | 0.58 | 0.8 | 1.0 | 0.66 | 0.64 | 0.82 | 0.9592 |
+| MaxSim_accuracy@10 | 0.72 | 0.94 | 0.98 | 0.76 | 1.0 | 0.78 | 0.68 | 0.84 | 1.0 | 0.74 | 0.76 | 0.88 | 1.0 |
+| MaxSim_precision@1 | 0.26 | 0.72 | 0.84 | 0.42 | 0.92 | 0.5 | 0.4 | 0.54 | 0.82 | 0.42 | 0.2 | 0.6 | 0.6939 |
+| MaxSim_precision@3 | 0.1733 | 0.6067 | 0.3333 | 0.2667 | 0.54 | 0.22 | 0.34 | 0.2533 | 0.3867 | 0.2867 | 0.16 | 0.2667 | 0.6395 |
+| MaxSim_precision@5 | 0.12 | 0.572 | 0.208 | 0.228 | 0.34 | 0.136 | 0.32 | 0.168 | 0.244 | 0.224 | 0.128 | 0.18 | 0.6367 |
+| MaxSim_precision@10 | 0.102 | 0.49 | 0.106 | 0.14 | 0.18 | 0.078 | 0.28 | 0.09 | 0.128 | 0.15 | 0.076 | 0.098 | 0.4939 |
+| MaxSim_recall@1 | 0.12 | 0.0812 | 0.7767 | 0.2159 | 0.46 | 0.5 | 0.0335 | 0.51 | 0.734 | 0.0867 | 0.2 | 0.575 | 0.0494 |
+| MaxSim_recall@3 | 0.23 | 0.164 | 0.9033 | 0.3558 | 0.81 | 0.66 | 0.0771 | 0.7 | 0.912 | 0.1767 | 0.48 | 0.74 | 0.1304 |
+| MaxSim_recall@5 | 0.2567 | 0.2287 | 0.93 | 0.4973 | 0.85 | 0.68 | 0.0957 | 0.76 | 0.956 | 0.2287 | 0.64 | 0.815 | 0.2136 |
+| MaxSim_recall@10 | 0.4 | 0.3339 | 0.95 | 0.584 | 0.9 | 0.78 | 0.144 | 0.81 | 0.9727 | 0.3067 | 0.76 | 0.87 | 0.3156 |
+| **MaxSim_ndcg@10** | **0.3059** | **0.5944** | **0.8864** | **0.4729** | **0.8634** | **0.6351** | **0.3302** | **0.6699** | **0.9086** | **0.3142** | **0.4545** | **0.7357** | **0.5613** |
+| MaxSim_mrr@10 | 0.3818 | 0.7956 | 0.8903 | 0.5344 | 0.9507 | 0.5894 | 0.4766 | 0.6447 | 0.9 | 0.5304 | 0.3582 | 0.6952 | 0.8086 |
+| MaxSim_map@100 | 0.2305 | 0.4761 | 0.8591 | 0.3849 | 0.8069 | 0.6008 | 0.1419 | 0.6201 | 0.8814 | 0.2477 | 0.3653 | 0.6912 | 0.4155 |
+
+#### Nano BEIR
+* Dataset: `NanoBEIR_mean`
+* Evaluated with pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
+
+| Metric | Value |
+|:--------------------|:-----------|
+| MaxSim_accuracy@1 | 0.5641 |
+| MaxSim_accuracy@3 | 0.7291 |
+| MaxSim_accuracy@5 | 0.7846 |
+| MaxSim_accuracy@10 | 0.8523 |
+| MaxSim_precision@1 | 0.5641 |
+| MaxSim_precision@3 | 0.3441 |
+| MaxSim_precision@5 | 0.2696 |
+| MaxSim_precision@10 | 0.1855 |
+| MaxSim_recall@1 | 0.334 |
+| MaxSim_recall@3 | 0.4876 |
+| MaxSim_recall@5 | 0.5501 |
+| MaxSim_recall@10 | 0.6251 |
+| **MaxSim_ndcg@10** | **0.5948** |
+| MaxSim_mrr@10 | 0.6581 |
+| MaxSim_map@100 | 0.517 |
+
+
+
+
+
+## Training Details
+
+### Training Dataset
+
+#### ms-marco-en-bge-gemma
+
+* Dataset: [ms-marco-en-bge-gemma](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma) at [d8bad49](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma/tree/d8bad497c8bd698c868a49721999c386d5e6ae8f)
+* Size: 533,177 training samples
+* Columns: query_id, document_ids, and scores
+* Approximate statistics based on the first 1000 samples:
+ | | query_id | document_ids | scores |
+ |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
+ | type | int | list | list |
+ | details |
685613 | [7546874, 1176459, 197677, 2306318, 8541504, ...] | [0.9999999992804947, 0.24845418756716053, 0.7594154013647826, 0.26644182105618575, 0.390668914839766, ...] |
+ | 237784 | [6366584, 4034101, 2325374, 6914618, 6042146, ...] | [0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...] |
+ | 904294 | [448408, 8743975, 49600, 7339401, 2714261, ...] | [0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...] |
+* Loss: pylate.losses.distillation.Distillation
+
+### Training Hyperparameters
+#### Non-Default Hyperparameters
+
+- `eval_strategy`: steps
+- `per_device_train_batch_size`: 16
+- `learning_rate`: 3e-05
+- `num_train_epochs`: 1
+- `bf16`: True
+
+#### All Hyperparameters
+