Commit
·
6b6b533
1
Parent(s):
382bd51
Update README.md
Browse files
README.md
CHANGED
|
@@ -21,7 +21,6 @@ An extensive dataset with “artificial” errors was taken as a training corpus
|
|
| 21 |
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
|
| 22 |
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
|
| 23 |
- [Paper about SAGE and our best solution](https://arxiv.org/abs/2308.09435), Review EACL 2024
|
| 24 |
-
- Path to model = "ai-forever/T5-large-spell"
|
| 25 |
|
| 26 |
### Examples
|
| 27 |
| Input | Output |
|
|
@@ -61,14 +60,14 @@ We present a comparison of our solution both with open automatic spell checkers
|
|
| 61 |
```python
|
| 62 |
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
| 63 |
|
| 64 |
-
path_to_model = "
|
| 65 |
|
| 66 |
model = T5ForConditionalGeneration.from_pretrained(path_to_model)
|
| 67 |
tokenizer = AutoTokenizer.from_pretrained(path_to_model)
|
| 68 |
prefix = "grammar: "
|
| 69 |
|
| 70 |
sentence = "If you bought something goregous, you well be very happy."
|
| 71 |
-
sentence = prefix +
|
| 72 |
|
| 73 |
encodings = tokenizer(sentence, return_tensors="pt")
|
| 74 |
generated_tokens = model.generate(**encodings)
|
|
|
|
| 21 |
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
|
| 22 |
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
|
| 23 |
- [Paper about SAGE and our best solution](https://arxiv.org/abs/2308.09435), Review EACL 2024
|
|
|
|
| 24 |
|
| 25 |
### Examples
|
| 26 |
| Input | Output |
|
|
|
|
| 60 |
```python
|
| 61 |
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
| 62 |
|
| 63 |
+
path_to_model = "ai-forever/T5-large-spell"
|
| 64 |
|
| 65 |
model = T5ForConditionalGeneration.from_pretrained(path_to_model)
|
| 66 |
tokenizer = AutoTokenizer.from_pretrained(path_to_model)
|
| 67 |
prefix = "grammar: "
|
| 68 |
|
| 69 |
sentence = "If you bought something goregous, you well be very happy."
|
| 70 |
+
sentence = prefix + sentence
|
| 71 |
|
| 72 |
encodings = tokenizer(sentence, return_tensors="pt")
|
| 73 |
generated_tokens = model.generate(**encodings)
|