File size: 1,935 Bytes
76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff 76c2b99 6f667ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
license: apache-2.0
language:
- fa
base_model: openai/whisper-small
tags:
- generated_from_trainer
- automatic-speech-recognition
- whisper
- persian
- speech
- ASR
- common voice
- emotion-recognition
datasets:
- aliyzd95/common_voice_21_0_fa
metrics:
- wer
model-index:
- name: Whisper Small Pesrian V1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 21.0
type: aliyzd95/common_voice_21_0_fa
config: fa
split: None
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 31.930087051142547
---
# Whisper Small Persian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 21.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3323
- Wer: 31.9300
## 🧠 Model Details
- Base model: `openai/whisper-small`
- Fine-tuned on:
- Common Voice 21 (Persian subset)
- Language: Persian (fa)
## 🧪 Evaluation
| Metric | Value |
|--------|-------|
| WER | `31.93%`
## 📦 Usage
```python
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition", model="aliyzd95/whisper-small-persian-v1")
result = pipe("your-audio.wav")
print(result["text"])
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- gradient_accumulation_steps: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1 |