--- library_name: transformers license: apache-2.0 language: - fa base_model: openai/whisper-small tags: - generated_from_trainer - automatic-speech-recognition - whisper - persian - speech - ASR - common voice - emotion-recognition datasets: - aliyzd95/common_voice_21_0_fa metrics: - wer model-index: - name: Whisper Small Pesrian V1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 21.0 type: aliyzd95/common_voice_21_0_fa config: fa split: None args: 'split: test' metrics: - name: Wer type: wer value: 31.930087051142547 --- # Whisper Small Persian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 21.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3323 - Wer: 31.9300 ## 🧠 Model Details - Base model: `openai/whisper-small` - Fine-tuned on: - Common Voice 21 (Persian subset) - Language: Persian (fa) ## 🧪 Evaluation | Metric | Value | |--------|-------| | WER | `31.93%` ## 📦 Usage ```python from transformers import pipeline pipe = pipeline("automatic-speech-recognition", model="aliyzd95/whisper-small-persian-v1") result = pipe("your-audio.wav") print(result["text"]) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - gradient_accumulation_steps: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1