Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +429 -0
- chat_template.jinja +1 -0
- config.json +216 -0
- configuration_molmoact.py +355 -0
- generation_config.json +6 -0
- image_processing_molmoact.py +959 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +621 -0
- modeling_molmoact.py +2100 -0
- preprocessor_config.json +27 -0
- processing_molmoact.py +465 -0
- processor_config.json +14 -0
- special_tokens_map.json +1944 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3713 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<DEPTH_0>": 151667,
|
| 4 |
+
"<DEPTH_100>": 151767,
|
| 5 |
+
"<DEPTH_101>": 151768,
|
| 6 |
+
"<DEPTH_102>": 151769,
|
| 7 |
+
"<DEPTH_103>": 151770,
|
| 8 |
+
"<DEPTH_104>": 151771,
|
| 9 |
+
"<DEPTH_105>": 151772,
|
| 10 |
+
"<DEPTH_106>": 151773,
|
| 11 |
+
"<DEPTH_107>": 151774,
|
| 12 |
+
"<DEPTH_108>": 151775,
|
| 13 |
+
"<DEPTH_109>": 151776,
|
| 14 |
+
"<DEPTH_10>": 151677,
|
| 15 |
+
"<DEPTH_110>": 151777,
|
| 16 |
+
"<DEPTH_111>": 151778,
|
| 17 |
+
"<DEPTH_112>": 151779,
|
| 18 |
+
"<DEPTH_113>": 151780,
|
| 19 |
+
"<DEPTH_114>": 151781,
|
| 20 |
+
"<DEPTH_115>": 151782,
|
| 21 |
+
"<DEPTH_116>": 151783,
|
| 22 |
+
"<DEPTH_117>": 151784,
|
| 23 |
+
"<DEPTH_118>": 151785,
|
| 24 |
+
"<DEPTH_119>": 151786,
|
| 25 |
+
"<DEPTH_11>": 151678,
|
| 26 |
+
"<DEPTH_120>": 151787,
|
| 27 |
+
"<DEPTH_121>": 151788,
|
| 28 |
+
"<DEPTH_122>": 151789,
|
| 29 |
+
"<DEPTH_123>": 151790,
|
| 30 |
+
"<DEPTH_124>": 151791,
|
| 31 |
+
"<DEPTH_125>": 151792,
|
| 32 |
+
"<DEPTH_126>": 151793,
|
| 33 |
+
"<DEPTH_127>": 151794,
|
| 34 |
+
"<DEPTH_12>": 151679,
|
| 35 |
+
"<DEPTH_13>": 151680,
|
| 36 |
+
"<DEPTH_14>": 151681,
|
| 37 |
+
"<DEPTH_15>": 151682,
|
| 38 |
+
"<DEPTH_16>": 151683,
|
| 39 |
+
"<DEPTH_17>": 151684,
|
| 40 |
+
"<DEPTH_18>": 151685,
|
| 41 |
+
"<DEPTH_19>": 151686,
|
| 42 |
+
"<DEPTH_1>": 151668,
|
| 43 |
+
"<DEPTH_20>": 151687,
|
| 44 |
+
"<DEPTH_21>": 151688,
|
| 45 |
+
"<DEPTH_22>": 151689,
|
| 46 |
+
"<DEPTH_23>": 151690,
|
| 47 |
+
"<DEPTH_24>": 151691,
|
| 48 |
+
"<DEPTH_25>": 151692,
|
| 49 |
+
"<DEPTH_26>": 151693,
|
| 50 |
+
"<DEPTH_27>": 151694,
|
| 51 |
+
"<DEPTH_28>": 151695,
|
| 52 |
+
"<DEPTH_29>": 151696,
|
| 53 |
+
"<DEPTH_2>": 151669,
|
| 54 |
+
"<DEPTH_30>": 151697,
|
| 55 |
+
"<DEPTH_31>": 151698,
|
| 56 |
+
"<DEPTH_32>": 151699,
|
| 57 |
+
"<DEPTH_33>": 151700,
|
| 58 |
+
"<DEPTH_34>": 151701,
|
| 59 |
+
"<DEPTH_35>": 151702,
|
| 60 |
+
"<DEPTH_36>": 151703,
|
| 61 |
+
"<DEPTH_37>": 151704,
|
| 62 |
+
"<DEPTH_38>": 151705,
|
| 63 |
+
"<DEPTH_39>": 151706,
|
| 64 |
+
"<DEPTH_3>": 151670,
|
| 65 |
+
"<DEPTH_40>": 151707,
|
| 66 |
+
"<DEPTH_41>": 151708,
|
| 67 |
+
"<DEPTH_42>": 151709,
|
| 68 |
+
"<DEPTH_43>": 151710,
|
| 69 |
+
"<DEPTH_44>": 151711,
|
| 70 |
+
"<DEPTH_45>": 151712,
|
| 71 |
+
"<DEPTH_46>": 151713,
|
| 72 |
+
"<DEPTH_47>": 151714,
|
| 73 |
+
"<DEPTH_48>": 151715,
|
| 74 |
+
"<DEPTH_49>": 151716,
|
| 75 |
+
"<DEPTH_4>": 151671,
|
| 76 |
+
"<DEPTH_50>": 151717,
|
| 77 |
+
"<DEPTH_51>": 151718,
|
| 78 |
+
"<DEPTH_52>": 151719,
|
| 79 |
+
"<DEPTH_53>": 151720,
|
| 80 |
+
"<DEPTH_54>": 151721,
|
| 81 |
+
"<DEPTH_55>": 151722,
|
| 82 |
+
"<DEPTH_56>": 151723,
|
| 83 |
+
"<DEPTH_57>": 151724,
|
| 84 |
+
"<DEPTH_58>": 151725,
|
| 85 |
+
"<DEPTH_59>": 151726,
|
| 86 |
+
"<DEPTH_5>": 151672,
|
| 87 |
+
"<DEPTH_60>": 151727,
|
| 88 |
+
"<DEPTH_61>": 151728,
|
| 89 |
+
"<DEPTH_62>": 151729,
|
| 90 |
+
"<DEPTH_63>": 151730,
|
| 91 |
+
"<DEPTH_64>": 151731,
|
| 92 |
+
"<DEPTH_65>": 151732,
|
| 93 |
+
"<DEPTH_66>": 151733,
|
| 94 |
+
"<DEPTH_67>": 151734,
|
| 95 |
+
"<DEPTH_68>": 151735,
|
| 96 |
+
"<DEPTH_69>": 151736,
|
| 97 |
+
"<DEPTH_6>": 151673,
|
| 98 |
+
"<DEPTH_70>": 151737,
|
| 99 |
+
"<DEPTH_71>": 151738,
|
| 100 |
+
"<DEPTH_72>": 151739,
|
| 101 |
+
"<DEPTH_73>": 151740,
|
| 102 |
+
"<DEPTH_74>": 151741,
|
| 103 |
+
"<DEPTH_75>": 151742,
|
| 104 |
+
"<DEPTH_76>": 151743,
|
| 105 |
+
"<DEPTH_77>": 151744,
|
| 106 |
+
"<DEPTH_78>": 151745,
|
| 107 |
+
"<DEPTH_79>": 151746,
|
| 108 |
+
"<DEPTH_7>": 151674,
|
| 109 |
+
"<DEPTH_80>": 151747,
|
| 110 |
+
"<DEPTH_81>": 151748,
|
| 111 |
+
"<DEPTH_82>": 151749,
|
| 112 |
+
"<DEPTH_83>": 151750,
|
| 113 |
+
"<DEPTH_84>": 151751,
|
| 114 |
+
"<DEPTH_85>": 151752,
|
| 115 |
+
"<DEPTH_86>": 151753,
|
| 116 |
+
"<DEPTH_87>": 151754,
|
| 117 |
+
"<DEPTH_88>": 151755,
|
| 118 |
+
"<DEPTH_89>": 151756,
|
| 119 |
+
"<DEPTH_8>": 151675,
|
| 120 |
+
"<DEPTH_90>": 151757,
|
| 121 |
+
"<DEPTH_91>": 151758,
|
| 122 |
+
"<DEPTH_92>": 151759,
|
| 123 |
+
"<DEPTH_93>": 151760,
|
| 124 |
+
"<DEPTH_94>": 151761,
|
| 125 |
+
"<DEPTH_95>": 151762,
|
| 126 |
+
"<DEPTH_96>": 151763,
|
| 127 |
+
"<DEPTH_97>": 151764,
|
| 128 |
+
"<DEPTH_98>": 151765,
|
| 129 |
+
"<DEPTH_99>": 151766,
|
| 130 |
+
"<DEPTH_9>": 151676,
|
| 131 |
+
"<DEPTH_END>": 151666,
|
| 132 |
+
"<DEPTH_START>": 151665,
|
| 133 |
+
"<im_col>": 152067,
|
| 134 |
+
"<im_end>": 152065,
|
| 135 |
+
"<im_low>": 152069,
|
| 136 |
+
"<im_patch>": 152066,
|
| 137 |
+
"<im_start>": 152064,
|
| 138 |
+
"<tool_call>": 151657,
|
| 139 |
+
"<|box_end|>": 151649,
|
| 140 |
+
"<|box_start|>": 151648,
|
| 141 |
+
"<|endoftext|>": 151643,
|
| 142 |
+
"<|file_sep|>": 151664,
|
| 143 |
+
"<|fim_middle|>": 151660,
|
| 144 |
+
"<|fim_pad|>": 151662,
|
| 145 |
+
"<|fim_prefix|>": 151659,
|
| 146 |
+
"<|fim_suffix|>": 151661,
|
| 147 |
+
"<|im_end|>": 151645,
|
| 148 |
+
"<|im_start|>": 151644,
|
| 149 |
+
"<|image_pad|>": 151655,
|
| 150 |
+
"<|image|>": 152068,
|
| 151 |
+
"<|object_ref_end|>": 151647,
|
| 152 |
+
"<|object_ref_start|>": 151646,
|
| 153 |
+
"<|quad_end|>": 151651,
|
| 154 |
+
"<|quad_start|>": 151650,
|
| 155 |
+
"<|repo_name|>": 151663,
|
| 156 |
+
"<|video_pad|>": 151656,
|
| 157 |
+
"<|vision_end|>": 151653,
|
| 158 |
+
"<|vision_pad|>": 151654,
|
| 159 |
+
"<|vision_start|>": 151652,
|
| 160 |
+
"|<EXTRA_TOKENS_0>|": 151795,
|
| 161 |
+
"|<EXTRA_TOKENS_100>|": 151895,
|
| 162 |
+
"|<EXTRA_TOKENS_101>|": 151896,
|
| 163 |
+
"|<EXTRA_TOKENS_102>|": 151897,
|
| 164 |
+
"|<EXTRA_TOKENS_103>|": 151898,
|
| 165 |
+
"|<EXTRA_TOKENS_104>|": 151899,
|
| 166 |
+
"|<EXTRA_TOKENS_105>|": 151900,
|
| 167 |
+
"|<EXTRA_TOKENS_106>|": 151901,
|
| 168 |
+
"|<EXTRA_TOKENS_107>|": 151902,
|
| 169 |
+
"|<EXTRA_TOKENS_108>|": 151903,
|
| 170 |
+
"|<EXTRA_TOKENS_109>|": 151904,
|
| 171 |
+
"|<EXTRA_TOKENS_10>|": 151805,
|
| 172 |
+
"|<EXTRA_TOKENS_110>|": 151905,
|
| 173 |
+
"|<EXTRA_TOKENS_111>|": 151906,
|
| 174 |
+
"|<EXTRA_TOKENS_112>|": 151907,
|
| 175 |
+
"|<EXTRA_TOKENS_113>|": 151908,
|
| 176 |
+
"|<EXTRA_TOKENS_114>|": 151909,
|
| 177 |
+
"|<EXTRA_TOKENS_115>|": 151910,
|
| 178 |
+
"|<EXTRA_TOKENS_116>|": 151911,
|
| 179 |
+
"|<EXTRA_TOKENS_117>|": 151912,
|
| 180 |
+
"|<EXTRA_TOKENS_118>|": 151913,
|
| 181 |
+
"|<EXTRA_TOKENS_119>|": 151914,
|
| 182 |
+
"|<EXTRA_TOKENS_11>|": 151806,
|
| 183 |
+
"|<EXTRA_TOKENS_120>|": 151915,
|
| 184 |
+
"|<EXTRA_TOKENS_121>|": 151916,
|
| 185 |
+
"|<EXTRA_TOKENS_122>|": 151917,
|
| 186 |
+
"|<EXTRA_TOKENS_123>|": 151918,
|
| 187 |
+
"|<EXTRA_TOKENS_124>|": 151919,
|
| 188 |
+
"|<EXTRA_TOKENS_125>|": 151920,
|
| 189 |
+
"|<EXTRA_TOKENS_126>|": 151921,
|
| 190 |
+
"|<EXTRA_TOKENS_127>|": 151922,
|
| 191 |
+
"|<EXTRA_TOKENS_128>|": 151923,
|
| 192 |
+
"|<EXTRA_TOKENS_129>|": 151924,
|
| 193 |
+
"|<EXTRA_TOKENS_12>|": 151807,
|
| 194 |
+
"|<EXTRA_TOKENS_130>|": 151925,
|
| 195 |
+
"|<EXTRA_TOKENS_131>|": 151926,
|
| 196 |
+
"|<EXTRA_TOKENS_132>|": 151927,
|
| 197 |
+
"|<EXTRA_TOKENS_133>|": 151928,
|
| 198 |
+
"|<EXTRA_TOKENS_134>|": 151929,
|
| 199 |
+
"|<EXTRA_TOKENS_135>|": 151930,
|
| 200 |
+
"|<EXTRA_TOKENS_136>|": 151931,
|
| 201 |
+
"|<EXTRA_TOKENS_137>|": 151932,
|
| 202 |
+
"|<EXTRA_TOKENS_138>|": 151933,
|
| 203 |
+
"|<EXTRA_TOKENS_139>|": 151934,
|
| 204 |
+
"|<EXTRA_TOKENS_13>|": 151808,
|
| 205 |
+
"|<EXTRA_TOKENS_140>|": 151935,
|
| 206 |
+
"|<EXTRA_TOKENS_141>|": 151936,
|
| 207 |
+
"|<EXTRA_TOKENS_142>|": 151937,
|
| 208 |
+
"|<EXTRA_TOKENS_143>|": 151938,
|
| 209 |
+
"|<EXTRA_TOKENS_144>|": 151939,
|
| 210 |
+
"|<EXTRA_TOKENS_145>|": 151940,
|
| 211 |
+
"|<EXTRA_TOKENS_146>|": 151941,
|
| 212 |
+
"|<EXTRA_TOKENS_147>|": 151942,
|
| 213 |
+
"|<EXTRA_TOKENS_148>|": 151943,
|
| 214 |
+
"|<EXTRA_TOKENS_149>|": 151944,
|
| 215 |
+
"|<EXTRA_TOKENS_14>|": 151809,
|
| 216 |
+
"|<EXTRA_TOKENS_150>|": 151945,
|
| 217 |
+
"|<EXTRA_TOKENS_151>|": 151946,
|
| 218 |
+
"|<EXTRA_TOKENS_152>|": 151947,
|
| 219 |
+
"|<EXTRA_TOKENS_153>|": 151948,
|
| 220 |
+
"|<EXTRA_TOKENS_154>|": 151949,
|
| 221 |
+
"|<EXTRA_TOKENS_155>|": 151950,
|
| 222 |
+
"|<EXTRA_TOKENS_156>|": 151951,
|
| 223 |
+
"|<EXTRA_TOKENS_157>|": 151952,
|
| 224 |
+
"|<EXTRA_TOKENS_158>|": 151953,
|
| 225 |
+
"|<EXTRA_TOKENS_159>|": 151954,
|
| 226 |
+
"|<EXTRA_TOKENS_15>|": 151810,
|
| 227 |
+
"|<EXTRA_TOKENS_160>|": 151955,
|
| 228 |
+
"|<EXTRA_TOKENS_161>|": 151956,
|
| 229 |
+
"|<EXTRA_TOKENS_162>|": 151957,
|
| 230 |
+
"|<EXTRA_TOKENS_163>|": 151958,
|
| 231 |
+
"|<EXTRA_TOKENS_164>|": 151959,
|
| 232 |
+
"|<EXTRA_TOKENS_165>|": 151960,
|
| 233 |
+
"|<EXTRA_TOKENS_166>|": 151961,
|
| 234 |
+
"|<EXTRA_TOKENS_167>|": 151962,
|
| 235 |
+
"|<EXTRA_TOKENS_168>|": 151963,
|
| 236 |
+
"|<EXTRA_TOKENS_169>|": 151964,
|
| 237 |
+
"|<EXTRA_TOKENS_16>|": 151811,
|
| 238 |
+
"|<EXTRA_TOKENS_170>|": 151965,
|
| 239 |
+
"|<EXTRA_TOKENS_171>|": 151966,
|
| 240 |
+
"|<EXTRA_TOKENS_172>|": 151967,
|
| 241 |
+
"|<EXTRA_TOKENS_173>|": 151968,
|
| 242 |
+
"|<EXTRA_TOKENS_174>|": 151969,
|
| 243 |
+
"|<EXTRA_TOKENS_175>|": 151970,
|
| 244 |
+
"|<EXTRA_TOKENS_176>|": 151971,
|
| 245 |
+
"|<EXTRA_TOKENS_177>|": 151972,
|
| 246 |
+
"|<EXTRA_TOKENS_178>|": 151973,
|
| 247 |
+
"|<EXTRA_TOKENS_179>|": 151974,
|
| 248 |
+
"|<EXTRA_TOKENS_17>|": 151812,
|
| 249 |
+
"|<EXTRA_TOKENS_180>|": 151975,
|
| 250 |
+
"|<EXTRA_TOKENS_181>|": 151976,
|
| 251 |
+
"|<EXTRA_TOKENS_182>|": 151977,
|
| 252 |
+
"|<EXTRA_TOKENS_183>|": 151978,
|
| 253 |
+
"|<EXTRA_TOKENS_184>|": 151979,
|
| 254 |
+
"|<EXTRA_TOKENS_185>|": 151980,
|
| 255 |
+
"|<EXTRA_TOKENS_186>|": 151981,
|
| 256 |
+
"|<EXTRA_TOKENS_187>|": 151982,
|
| 257 |
+
"|<EXTRA_TOKENS_188>|": 151983,
|
| 258 |
+
"|<EXTRA_TOKENS_189>|": 151984,
|
| 259 |
+
"|<EXTRA_TOKENS_18>|": 151813,
|
| 260 |
+
"|<EXTRA_TOKENS_190>|": 151985,
|
| 261 |
+
"|<EXTRA_TOKENS_191>|": 151986,
|
| 262 |
+
"|<EXTRA_TOKENS_192>|": 151987,
|
| 263 |
+
"|<EXTRA_TOKENS_193>|": 151988,
|
| 264 |
+
"|<EXTRA_TOKENS_194>|": 151989,
|
| 265 |
+
"|<EXTRA_TOKENS_195>|": 151990,
|
| 266 |
+
"|<EXTRA_TOKENS_196>|": 151991,
|
| 267 |
+
"|<EXTRA_TOKENS_197>|": 151992,
|
| 268 |
+
"|<EXTRA_TOKENS_198>|": 151993,
|
| 269 |
+
"|<EXTRA_TOKENS_199>|": 151994,
|
| 270 |
+
"|<EXTRA_TOKENS_19>|": 151814,
|
| 271 |
+
"|<EXTRA_TOKENS_1>|": 151796,
|
| 272 |
+
"|<EXTRA_TOKENS_200>|": 151995,
|
| 273 |
+
"|<EXTRA_TOKENS_201>|": 151996,
|
| 274 |
+
"|<EXTRA_TOKENS_202>|": 151997,
|
| 275 |
+
"|<EXTRA_TOKENS_203>|": 151998,
|
| 276 |
+
"|<EXTRA_TOKENS_204>|": 151999,
|
| 277 |
+
"|<EXTRA_TOKENS_205>|": 152000,
|
| 278 |
+
"|<EXTRA_TOKENS_206>|": 152001,
|
| 279 |
+
"|<EXTRA_TOKENS_207>|": 152002,
|
| 280 |
+
"|<EXTRA_TOKENS_208>|": 152003,
|
| 281 |
+
"|<EXTRA_TOKENS_209>|": 152004,
|
| 282 |
+
"|<EXTRA_TOKENS_20>|": 151815,
|
| 283 |
+
"|<EXTRA_TOKENS_210>|": 152005,
|
| 284 |
+
"|<EXTRA_TOKENS_211>|": 152006,
|
| 285 |
+
"|<EXTRA_TOKENS_212>|": 152007,
|
| 286 |
+
"|<EXTRA_TOKENS_213>|": 152008,
|
| 287 |
+
"|<EXTRA_TOKENS_214>|": 152009,
|
| 288 |
+
"|<EXTRA_TOKENS_215>|": 152010,
|
| 289 |
+
"|<EXTRA_TOKENS_216>|": 152011,
|
| 290 |
+
"|<EXTRA_TOKENS_217>|": 152012,
|
| 291 |
+
"|<EXTRA_TOKENS_218>|": 152013,
|
| 292 |
+
"|<EXTRA_TOKENS_219>|": 152014,
|
| 293 |
+
"|<EXTRA_TOKENS_21>|": 151816,
|
| 294 |
+
"|<EXTRA_TOKENS_220>|": 152015,
|
| 295 |
+
"|<EXTRA_TOKENS_221>|": 152016,
|
| 296 |
+
"|<EXTRA_TOKENS_222>|": 152017,
|
| 297 |
+
"|<EXTRA_TOKENS_223>|": 152018,
|
| 298 |
+
"|<EXTRA_TOKENS_224>|": 152019,
|
| 299 |
+
"|<EXTRA_TOKENS_225>|": 152020,
|
| 300 |
+
"|<EXTRA_TOKENS_226>|": 152021,
|
| 301 |
+
"|<EXTRA_TOKENS_227>|": 152022,
|
| 302 |
+
"|<EXTRA_TOKENS_228>|": 152023,
|
| 303 |
+
"|<EXTRA_TOKENS_229>|": 152024,
|
| 304 |
+
"|<EXTRA_TOKENS_22>|": 151817,
|
| 305 |
+
"|<EXTRA_TOKENS_230>|": 152025,
|
| 306 |
+
"|<EXTRA_TOKENS_231>|": 152026,
|
| 307 |
+
"|<EXTRA_TOKENS_232>|": 152027,
|
| 308 |
+
"|<EXTRA_TOKENS_233>|": 152028,
|
| 309 |
+
"|<EXTRA_TOKENS_234>|": 152029,
|
| 310 |
+
"|<EXTRA_TOKENS_235>|": 152030,
|
| 311 |
+
"|<EXTRA_TOKENS_236>|": 152031,
|
| 312 |
+
"|<EXTRA_TOKENS_237>|": 152032,
|
| 313 |
+
"|<EXTRA_TOKENS_238>|": 152033,
|
| 314 |
+
"|<EXTRA_TOKENS_239>|": 152034,
|
| 315 |
+
"|<EXTRA_TOKENS_23>|": 151818,
|
| 316 |
+
"|<EXTRA_TOKENS_240>|": 152035,
|
| 317 |
+
"|<EXTRA_TOKENS_241>|": 152036,
|
| 318 |
+
"|<EXTRA_TOKENS_242>|": 152037,
|
| 319 |
+
"|<EXTRA_TOKENS_243>|": 152038,
|
| 320 |
+
"|<EXTRA_TOKENS_244>|": 152039,
|
| 321 |
+
"|<EXTRA_TOKENS_245>|": 152040,
|
| 322 |
+
"|<EXTRA_TOKENS_246>|": 152041,
|
| 323 |
+
"|<EXTRA_TOKENS_247>|": 152042,
|
| 324 |
+
"|<EXTRA_TOKENS_248>|": 152043,
|
| 325 |
+
"|<EXTRA_TOKENS_249>|": 152044,
|
| 326 |
+
"|<EXTRA_TOKENS_24>|": 151819,
|
| 327 |
+
"|<EXTRA_TOKENS_250>|": 152045,
|
| 328 |
+
"|<EXTRA_TOKENS_251>|": 152046,
|
| 329 |
+
"|<EXTRA_TOKENS_252>|": 152047,
|
| 330 |
+
"|<EXTRA_TOKENS_253>|": 152048,
|
| 331 |
+
"|<EXTRA_TOKENS_254>|": 152049,
|
| 332 |
+
"|<EXTRA_TOKENS_255>|": 152050,
|
| 333 |
+
"|<EXTRA_TOKENS_256>|": 152051,
|
| 334 |
+
"|<EXTRA_TOKENS_257>|": 152052,
|
| 335 |
+
"|<EXTRA_TOKENS_258>|": 152053,
|
| 336 |
+
"|<EXTRA_TOKENS_259>|": 152054,
|
| 337 |
+
"|<EXTRA_TOKENS_25>|": 151820,
|
| 338 |
+
"|<EXTRA_TOKENS_260>|": 152055,
|
| 339 |
+
"|<EXTRA_TOKENS_261>|": 152056,
|
| 340 |
+
"|<EXTRA_TOKENS_262>|": 152057,
|
| 341 |
+
"|<EXTRA_TOKENS_263>|": 152058,
|
| 342 |
+
"|<EXTRA_TOKENS_264>|": 152059,
|
| 343 |
+
"|<EXTRA_TOKENS_265>|": 152060,
|
| 344 |
+
"|<EXTRA_TOKENS_266>|": 152061,
|
| 345 |
+
"|<EXTRA_TOKENS_267>|": 152062,
|
| 346 |
+
"|<EXTRA_TOKENS_268>|": 152063,
|
| 347 |
+
"|<EXTRA_TOKENS_26>|": 151821,
|
| 348 |
+
"|<EXTRA_TOKENS_27>|": 151822,
|
| 349 |
+
"|<EXTRA_TOKENS_28>|": 151823,
|
| 350 |
+
"|<EXTRA_TOKENS_29>|": 151824,
|
| 351 |
+
"|<EXTRA_TOKENS_2>|": 151797,
|
| 352 |
+
"|<EXTRA_TOKENS_30>|": 151825,
|
| 353 |
+
"|<EXTRA_TOKENS_31>|": 151826,
|
| 354 |
+
"|<EXTRA_TOKENS_32>|": 151827,
|
| 355 |
+
"|<EXTRA_TOKENS_33>|": 151828,
|
| 356 |
+
"|<EXTRA_TOKENS_34>|": 151829,
|
| 357 |
+
"|<EXTRA_TOKENS_35>|": 151830,
|
| 358 |
+
"|<EXTRA_TOKENS_36>|": 151831,
|
| 359 |
+
"|<EXTRA_TOKENS_37>|": 151832,
|
| 360 |
+
"|<EXTRA_TOKENS_38>|": 151833,
|
| 361 |
+
"|<EXTRA_TOKENS_39>|": 151834,
|
| 362 |
+
"|<EXTRA_TOKENS_3>|": 151798,
|
| 363 |
+
"|<EXTRA_TOKENS_40>|": 151835,
|
| 364 |
+
"|<EXTRA_TOKENS_41>|": 151836,
|
| 365 |
+
"|<EXTRA_TOKENS_42>|": 151837,
|
| 366 |
+
"|<EXTRA_TOKENS_43>|": 151838,
|
| 367 |
+
"|<EXTRA_TOKENS_44>|": 151839,
|
| 368 |
+
"|<EXTRA_TOKENS_45>|": 151840,
|
| 369 |
+
"|<EXTRA_TOKENS_46>|": 151841,
|
| 370 |
+
"|<EXTRA_TOKENS_47>|": 151842,
|
| 371 |
+
"|<EXTRA_TOKENS_48>|": 151843,
|
| 372 |
+
"|<EXTRA_TOKENS_49>|": 151844,
|
| 373 |
+
"|<EXTRA_TOKENS_4>|": 151799,
|
| 374 |
+
"|<EXTRA_TOKENS_50>|": 151845,
|
| 375 |
+
"|<EXTRA_TOKENS_51>|": 151846,
|
| 376 |
+
"|<EXTRA_TOKENS_52>|": 151847,
|
| 377 |
+
"|<EXTRA_TOKENS_53>|": 151848,
|
| 378 |
+
"|<EXTRA_TOKENS_54>|": 151849,
|
| 379 |
+
"|<EXTRA_TOKENS_55>|": 151850,
|
| 380 |
+
"|<EXTRA_TOKENS_56>|": 151851,
|
| 381 |
+
"|<EXTRA_TOKENS_57>|": 151852,
|
| 382 |
+
"|<EXTRA_TOKENS_58>|": 151853,
|
| 383 |
+
"|<EXTRA_TOKENS_59>|": 151854,
|
| 384 |
+
"|<EXTRA_TOKENS_5>|": 151800,
|
| 385 |
+
"|<EXTRA_TOKENS_60>|": 151855,
|
| 386 |
+
"|<EXTRA_TOKENS_61>|": 151856,
|
| 387 |
+
"|<EXTRA_TOKENS_62>|": 151857,
|
| 388 |
+
"|<EXTRA_TOKENS_63>|": 151858,
|
| 389 |
+
"|<EXTRA_TOKENS_64>|": 151859,
|
| 390 |
+
"|<EXTRA_TOKENS_65>|": 151860,
|
| 391 |
+
"|<EXTRA_TOKENS_66>|": 151861,
|
| 392 |
+
"|<EXTRA_TOKENS_67>|": 151862,
|
| 393 |
+
"|<EXTRA_TOKENS_68>|": 151863,
|
| 394 |
+
"|<EXTRA_TOKENS_69>|": 151864,
|
| 395 |
+
"|<EXTRA_TOKENS_6>|": 151801,
|
| 396 |
+
"|<EXTRA_TOKENS_70>|": 151865,
|
| 397 |
+
"|<EXTRA_TOKENS_71>|": 151866,
|
| 398 |
+
"|<EXTRA_TOKENS_72>|": 151867,
|
| 399 |
+
"|<EXTRA_TOKENS_73>|": 151868,
|
| 400 |
+
"|<EXTRA_TOKENS_74>|": 151869,
|
| 401 |
+
"|<EXTRA_TOKENS_75>|": 151870,
|
| 402 |
+
"|<EXTRA_TOKENS_76>|": 151871,
|
| 403 |
+
"|<EXTRA_TOKENS_77>|": 151872,
|
| 404 |
+
"|<EXTRA_TOKENS_78>|": 151873,
|
| 405 |
+
"|<EXTRA_TOKENS_79>|": 151874,
|
| 406 |
+
"|<EXTRA_TOKENS_7>|": 151802,
|
| 407 |
+
"|<EXTRA_TOKENS_80>|": 151875,
|
| 408 |
+
"|<EXTRA_TOKENS_81>|": 151876,
|
| 409 |
+
"|<EXTRA_TOKENS_82>|": 151877,
|
| 410 |
+
"|<EXTRA_TOKENS_83>|": 151878,
|
| 411 |
+
"|<EXTRA_TOKENS_84>|": 151879,
|
| 412 |
+
"|<EXTRA_TOKENS_85>|": 151880,
|
| 413 |
+
"|<EXTRA_TOKENS_86>|": 151881,
|
| 414 |
+
"|<EXTRA_TOKENS_87>|": 151882,
|
| 415 |
+
"|<EXTRA_TOKENS_88>|": 151883,
|
| 416 |
+
"|<EXTRA_TOKENS_89>|": 151884,
|
| 417 |
+
"|<EXTRA_TOKENS_8>|": 151803,
|
| 418 |
+
"|<EXTRA_TOKENS_90>|": 151885,
|
| 419 |
+
"|<EXTRA_TOKENS_91>|": 151886,
|
| 420 |
+
"|<EXTRA_TOKENS_92>|": 151887,
|
| 421 |
+
"|<EXTRA_TOKENS_93>|": 151888,
|
| 422 |
+
"|<EXTRA_TOKENS_94>|": 151889,
|
| 423 |
+
"|<EXTRA_TOKENS_95>|": 151890,
|
| 424 |
+
"|<EXTRA_TOKENS_96>|": 151891,
|
| 425 |
+
"|<EXTRA_TOKENS_97>|": 151892,
|
| 426 |
+
"|<EXTRA_TOKENS_98>|": 151893,
|
| 427 |
+
"|<EXTRA_TOKENS_99>|": 151894,
|
| 428 |
+
"|<EXTRA_TOKENS_9>|": 151804
|
| 429 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{% for message in messages %}{%- if (loop.index % 2 == 1 and message['role'].lower() != 'user') or (loop.index % 2 == 0 and message['role'].lower() != 'assistant') -%}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{%- endif -%}{{ message['role'].capitalize() + ': ' }}{% if message['content'] is string %}{{ message['content'] }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'text' %}{{ content['text'] }}{%- if not loop.last -%}{{ ' ' }}{%- endif -%}{% endif %}{% endfor %}{% endif %}{%- if not loop.last -%}{{ ' ' }}{%- endif -%}{% endfor %}{% if add_generation_prompt %}{{ ' Assistant:' }}{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"adapter_config": {
|
| 3 |
+
"attention_dropout": 0.0,
|
| 4 |
+
"float32_attention": true,
|
| 5 |
+
"head_dim": 72,
|
| 6 |
+
"hidden_act": "silu",
|
| 7 |
+
"hidden_size": 1152,
|
| 8 |
+
"image_feature_dropout": 0.0,
|
| 9 |
+
"image_padding_embed": null,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 18944,
|
| 12 |
+
"model_type": "",
|
| 13 |
+
"num_attention_heads": 16,
|
| 14 |
+
"num_key_value_heads": 16,
|
| 15 |
+
"residual_dropout": 0.0,
|
| 16 |
+
"text_hidden_size": 3584,
|
| 17 |
+
"vit_layers": [
|
| 18 |
+
-3,
|
| 19 |
+
-9
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
"architectures": [
|
| 23 |
+
"MolmoActForActionReasoning"
|
| 24 |
+
],
|
| 25 |
+
"auto_map": {
|
| 26 |
+
"AutoConfig": "configuration_molmoact.MolmoActConfig",
|
| 27 |
+
"AutoModelForImageTextToText": "modeling_molmoact.MolmoActForActionReasoning"
|
| 28 |
+
},
|
| 29 |
+
"image_patch_id": 152066,
|
| 30 |
+
"initializer_range": 0.02,
|
| 31 |
+
"llm_config": {
|
| 32 |
+
"additional_vocab_size": 128,
|
| 33 |
+
"attention_dropout": 0.0,
|
| 34 |
+
"embedding_dropout": 0.0,
|
| 35 |
+
"head_dim": 128,
|
| 36 |
+
"hidden_act": "silu",
|
| 37 |
+
"hidden_size": 3584,
|
| 38 |
+
"initializer_range": 0.02,
|
| 39 |
+
"intermediate_size": 18944,
|
| 40 |
+
"layer_norm_eps": 1e-06,
|
| 41 |
+
"max_position_embeddings": 4096,
|
| 42 |
+
"model_type": "molmoact_llm",
|
| 43 |
+
"norm_after": false,
|
| 44 |
+
"num_attention_heads": 28,
|
| 45 |
+
"num_hidden_layers": 28,
|
| 46 |
+
"num_key_value_heads": 4,
|
| 47 |
+
"qk_norm_type": "olmo",
|
| 48 |
+
"qkv_bias": true,
|
| 49 |
+
"residual_dropout": 0.0,
|
| 50 |
+
"rope_scaling": null,
|
| 51 |
+
"rope_theta": 1000000.0,
|
| 52 |
+
"use_cache": true,
|
| 53 |
+
"use_qk_norm": false,
|
| 54 |
+
"vocab_size": 152064
|
| 55 |
+
},
|
| 56 |
+
"model_type": "molmoact",
|
| 57 |
+
"n_action_bins": 256,
|
| 58 |
+
"norm_stats": {
|
| 59 |
+
"libero_spatial_no_noops_modified": {
|
| 60 |
+
"action": {
|
| 61 |
+
"max": [
|
| 62 |
+
0.9375,
|
| 63 |
+
0.9375,
|
| 64 |
+
0.9375,
|
| 65 |
+
0.1971428543329239,
|
| 66 |
+
0.33642858266830444,
|
| 67 |
+
0.375,
|
| 68 |
+
1.0
|
| 69 |
+
],
|
| 70 |
+
"mean": [
|
| 71 |
+
0.15312479436397552,
|
| 72 |
+
0.13707277178764343,
|
| 73 |
+
-0.15526802837848663,
|
| 74 |
+
-0.005176450591534376,
|
| 75 |
+
-0.01120874285697937,
|
| 76 |
+
-0.020194264128804207,
|
| 77 |
+
0.4578818082809448
|
| 78 |
+
],
|
| 79 |
+
"min": [
|
| 80 |
+
-0.9375,
|
| 81 |
+
-0.9375,
|
| 82 |
+
-0.9375,
|
| 83 |
+
-0.1875,
|
| 84 |
+
-0.3675000071525574,
|
| 85 |
+
-0.36000001430511475,
|
| 86 |
+
0.0
|
| 87 |
+
],
|
| 88 |
+
"q01": [
|
| 89 |
+
-0.7454732114076613,
|
| 90 |
+
-0.6616071462631226,
|
| 91 |
+
-0.9375,
|
| 92 |
+
-0.1071428582072258,
|
| 93 |
+
-0.20678570866584778,
|
| 94 |
+
-0.1842857152223587,
|
| 95 |
+
0.0
|
| 96 |
+
],
|
| 97 |
+
"q99": [
|
| 98 |
+
0.9375,
|
| 99 |
+
0.8758928775787354,
|
| 100 |
+
0.9321428537368774,
|
| 101 |
+
0.1039285734295845,
|
| 102 |
+
0.17678570747375488,
|
| 103 |
+
0.14571428298950195,
|
| 104 |
+
1.0
|
| 105 |
+
],
|
| 106 |
+
"std": [
|
| 107 |
+
0.41272708773612976,
|
| 108 |
+
0.34724321961402893,
|
| 109 |
+
0.50869220495224,
|
| 110 |
+
0.037266165018081665,
|
| 111 |
+
0.07244449853897095,
|
| 112 |
+
0.05762382969260216,
|
| 113 |
+
0.49827873706817627
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
"num_trajectories": 432,
|
| 117 |
+
"num_transitions": 52970,
|
| 118 |
+
"proprio": {
|
| 119 |
+
"max": [
|
| 120 |
+
0.1759040206670761,
|
| 121 |
+
0.3904820382595062,
|
| 122 |
+
1.3290715217590332,
|
| 123 |
+
3.4566118717193604,
|
| 124 |
+
1.2268599271774292,
|
| 125 |
+
1.0429412126541138,
|
| 126 |
+
0.0,
|
| 127 |
+
0.041053611785173416,
|
| 128 |
+
0.000775813648942858
|
| 129 |
+
],
|
| 130 |
+
"mean": [
|
| 131 |
+
-0.024462558329105377,
|
| 132 |
+
0.106529600918293,
|
| 133 |
+
1.0580483675003052,
|
| 134 |
+
3.0628468990325928,
|
| 135 |
+
-0.10464039444923401,
|
| 136 |
+
0.08307311683893204,
|
| 137 |
+
0.0,
|
| 138 |
+
0.01995457336306572,
|
| 139 |
+
-0.020162804052233696
|
| 140 |
+
],
|
| 141 |
+
"min": [
|
| 142 |
+
-0.3095473051071167,
|
| 143 |
+
-0.29250794649124146,
|
| 144 |
+
0.9095591306686401,
|
| 145 |
+
2.497488260269165,
|
| 146 |
+
-1.8006486892700195,
|
| 147 |
+
-0.7207611203193665,
|
| 148 |
+
0.0,
|
| 149 |
+
-0.0004703797458205372,
|
| 150 |
+
-0.041536275297403336
|
| 151 |
+
],
|
| 152 |
+
"q01": [
|
| 153 |
+
-0.2727657300233841,
|
| 154 |
+
-0.23721413239836692,
|
| 155 |
+
0.9160063165426254,
|
| 156 |
+
2.77949666261673,
|
| 157 |
+
-1.3187511622905732,
|
| 158 |
+
-0.41989982962608335,
|
| 159 |
+
0.0,
|
| 160 |
+
0.001503719249740243,
|
| 161 |
+
-0.03989770736545324
|
| 162 |
+
],
|
| 163 |
+
"q99": [
|
| 164 |
+
0.13529365032911292,
|
| 165 |
+
0.3629165390133857,
|
| 166 |
+
1.2862326657772063,
|
| 167 |
+
3.2829698753356933,
|
| 168 |
+
0.9332760351896285,
|
| 169 |
+
0.6325724506378171,
|
| 170 |
+
0.0,
|
| 171 |
+
0.039933966137468815,
|
| 172 |
+
-0.001671919699292631
|
| 173 |
+
],
|
| 174 |
+
"std": [
|
| 175 |
+
0.1101478561758995,
|
| 176 |
+
0.13784688711166382,
|
| 177 |
+
0.1044282391667366,
|
| 178 |
+
0.10451053828001022,
|
| 179 |
+
0.4112098217010498,
|
| 180 |
+
0.2176690548658371,
|
| 181 |
+
0.0,
|
| 182 |
+
0.017260896041989326,
|
| 183 |
+
0.0171116404235363
|
| 184 |
+
]
|
| 185 |
+
}
|
| 186 |
+
}
|
| 187 |
+
},
|
| 188 |
+
"tie_word_embeddings": false,
|
| 189 |
+
"torch_dtype": "bfloat16",
|
| 190 |
+
"transformers_version": "4.52.3",
|
| 191 |
+
"use_cache": true,
|
| 192 |
+
"vit_config": {
|
| 193 |
+
"attention_dropout": 0.0,
|
| 194 |
+
"float32_attention": true,
|
| 195 |
+
"head_dim": 72,
|
| 196 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 197 |
+
"hidden_size": 1152,
|
| 198 |
+
"image_default_input_size": [
|
| 199 |
+
378,
|
| 200 |
+
378
|
| 201 |
+
],
|
| 202 |
+
"image_num_pos": 729,
|
| 203 |
+
"image_patch_size": 14,
|
| 204 |
+
"initializer_range": 0.02,
|
| 205 |
+
"intermediate_size": 4304,
|
| 206 |
+
"layer_norm_eps": 1e-06,
|
| 207 |
+
"model_type": "molmoact_vit",
|
| 208 |
+
"num_attention_heads": 16,
|
| 209 |
+
"num_hidden_layers": 27,
|
| 210 |
+
"num_key_value_heads": 16,
|
| 211 |
+
"patch_bias": true,
|
| 212 |
+
"pre_layernorm": false,
|
| 213 |
+
"residual_dropout": 0.0,
|
| 214 |
+
"use_cls_token": false
|
| 215 |
+
}
|
| 216 |
+
}
|
configuration_molmoact.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MolmoAct configuration
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Tuple, Optional, Dict, Any
|
| 6 |
+
|
| 7 |
+
from transformers import PretrainedConfig
|
| 8 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 9 |
+
from transformers.utils import logging
|
| 10 |
+
|
| 11 |
+
logger = logging.get_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class MolmoActVitConfig(PretrainedConfig):
|
| 15 |
+
r"""
|
| 16 |
+
This is the configuration class to store the configuration of a [`MolmoActVisionTransformer`].
|
| 17 |
+
It is used to instantiate a `MolmoActVisionTransformer` according to the specified arguments,
|
| 18 |
+
defining the model architecture.
|
| 19 |
+
|
| 20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 21 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 22 |
+
|
| 23 |
+
Example:
|
| 24 |
+
```python
|
| 25 |
+
>>> from transformers import MolmoActVitConfig, MolmoActVisionTransformer
|
| 26 |
+
|
| 27 |
+
>>> # Initializing a MolmoActVitConfig
|
| 28 |
+
>>> configuration = MolmoActVitConfig()
|
| 29 |
+
|
| 30 |
+
>>> # Initializing a MolmoActVisionTransformer (with random weights)
|
| 31 |
+
>>> model = MolmoActVisionTransformer(configuration)
|
| 32 |
+
|
| 33 |
+
>>> # Accessing the model configuration
|
| 34 |
+
>>> configuration = model.config
|
| 35 |
+
```"""
|
| 36 |
+
|
| 37 |
+
model_type = "molmoact_vit"
|
| 38 |
+
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
hidden_size: int = 1152,
|
| 42 |
+
intermediate_size: int = 4304,
|
| 43 |
+
num_hidden_layers: int = 27,
|
| 44 |
+
num_attention_heads: int = 16,
|
| 45 |
+
num_key_value_heads: int = 16,
|
| 46 |
+
head_dim: int = 72,
|
| 47 |
+
hidden_act: str = "gelu_pytorch_tanh",
|
| 48 |
+
layer_norm_eps: float = 1e-6,
|
| 49 |
+
image_default_input_size: Tuple[int, int] = (378, 378),
|
| 50 |
+
image_patch_size: int = 14,
|
| 51 |
+
image_num_pos: int = 577,
|
| 52 |
+
attention_dropout: float = 0.0,
|
| 53 |
+
residual_dropout: float = 0.0,
|
| 54 |
+
initializer_range: float = 0.02,
|
| 55 |
+
float32_attention: bool = True,
|
| 56 |
+
use_cls_token: bool = False, # True for OpenCLIP
|
| 57 |
+
patch_bias: bool = True, # False for OpenCLIP
|
| 58 |
+
pre_layernorm: bool = False, # True for OpenCLIP
|
| 59 |
+
**kwargs,
|
| 60 |
+
):
|
| 61 |
+
super().__init__(**kwargs)
|
| 62 |
+
self.hidden_size = hidden_size
|
| 63 |
+
self.intermediate_size = intermediate_size
|
| 64 |
+
self.num_hidden_layers = num_hidden_layers
|
| 65 |
+
self.num_attention_heads = num_attention_heads
|
| 66 |
+
self.num_key_value_heads = num_key_value_heads
|
| 67 |
+
self.head_dim = head_dim
|
| 68 |
+
self.hidden_act = hidden_act
|
| 69 |
+
self.layer_norm_eps = layer_norm_eps
|
| 70 |
+
self.image_default_input_size = image_default_input_size
|
| 71 |
+
self.image_patch_size = image_patch_size
|
| 72 |
+
self.image_num_pos = image_num_pos
|
| 73 |
+
self.attention_dropout = attention_dropout
|
| 74 |
+
self.residual_dropout = residual_dropout
|
| 75 |
+
self.initializer_range = initializer_range
|
| 76 |
+
self.float32_attention = float32_attention
|
| 77 |
+
self.use_cls_token = use_cls_token
|
| 78 |
+
self.patch_bias = patch_bias
|
| 79 |
+
self.pre_layernorm = pre_layernorm
|
| 80 |
+
|
| 81 |
+
@property
|
| 82 |
+
def image_num_patch(self):
|
| 83 |
+
h, w = self.image_default_input_size
|
| 84 |
+
return h // self.image_patch_size, w // self.image_patch_size
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class MolmoActAdapterConfig(PretrainedConfig):
|
| 88 |
+
r"""
|
| 89 |
+
This is the configuration class to store the configuration of MolmoActAdapter. With MolmoActVitConfig,
|
| 90 |
+
It is used to instantiate an MolmoActVisionBackbone according to the specified arguments,
|
| 91 |
+
defining the model architecture.
|
| 92 |
+
|
| 93 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 94 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 95 |
+
|
| 96 |
+
Example:
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
>>> from transformers import MolmoActVitConfig, MolmoActAdapterConfig, MolmoActVisionBackbone
|
| 100 |
+
|
| 101 |
+
>>> # Initializing a MolmoActVitConfig and a MolmoActAdapterConfig
|
| 102 |
+
>>> vit_config = MolmoActVitConfig()
|
| 103 |
+
>>> adapter_config = MolmoPoolingConfig()
|
| 104 |
+
|
| 105 |
+
>>> # Initializing a MolmoActVisionBackbone (with random weights)
|
| 106 |
+
>>> model = MolmoActVisionBackbone(vit_config, adapter_config)
|
| 107 |
+
|
| 108 |
+
>>> # Accessing the model configuration
|
| 109 |
+
>>> vit_configuration = model.vit_config
|
| 110 |
+
>>> adapter_configuration = model.adapter_config
|
| 111 |
+
```"""
|
| 112 |
+
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
vit_layers: Tuple = (-3, -9),
|
| 116 |
+
hidden_size: int = 1152,
|
| 117 |
+
num_attention_heads: int = 16,
|
| 118 |
+
num_key_value_heads: int = 16,
|
| 119 |
+
head_dim: int = 72,
|
| 120 |
+
float32_attention: bool = True,
|
| 121 |
+
attention_dropout: float = 0.0,
|
| 122 |
+
residual_dropout: float = 0.0,
|
| 123 |
+
hidden_act: str = "silu",
|
| 124 |
+
intermediate_size: int = 18944,
|
| 125 |
+
text_hidden_size: int = 3584,
|
| 126 |
+
image_feature_dropout: float = 0.0,
|
| 127 |
+
initializer_range: float = 0.02,
|
| 128 |
+
# pooling_mode: str = "indices", # "indices" (SigLIP) or "2x2_attention" (OpenCLIP)
|
| 129 |
+
image_padding_embed: Optional[str] = None, # e.g. "pad_and_partial_pad"
|
| 130 |
+
**kwargs,
|
| 131 |
+
):
|
| 132 |
+
super().__init__(**kwargs)
|
| 133 |
+
self.vit_layers = vit_layers
|
| 134 |
+
self.hidden_size = hidden_size
|
| 135 |
+
self.num_attention_heads = num_attention_heads
|
| 136 |
+
self.num_key_value_heads = num_key_value_heads
|
| 137 |
+
self.head_dim = head_dim
|
| 138 |
+
self.float32_attention = float32_attention
|
| 139 |
+
self.attention_dropout = attention_dropout
|
| 140 |
+
self.residual_dropout = residual_dropout
|
| 141 |
+
self.hidden_act = hidden_act
|
| 142 |
+
self.intermediate_size = intermediate_size
|
| 143 |
+
self.text_hidden_size = text_hidden_size
|
| 144 |
+
self.image_feature_dropout = image_feature_dropout
|
| 145 |
+
self.initializer_range = initializer_range
|
| 146 |
+
# self.pooling_mode = pooling_mode
|
| 147 |
+
self.image_padding_embed = image_padding_embed
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class MolmoActLlmConfig(PretrainedConfig):
|
| 151 |
+
r"""
|
| 152 |
+
This is the configuration class to store the configuration of a [`MolmoActLlm`]. It is used to instantiate a
|
| 153 |
+
`MolmoActLlm` according to the specified arguments, defining the model architecture.
|
| 154 |
+
|
| 155 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 156 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 157 |
+
|
| 158 |
+
Example:
|
| 159 |
+
```python
|
| 160 |
+
>>> from transformers import MolmoActLlmConfig, MolmoActLlm
|
| 161 |
+
|
| 162 |
+
>>> # Initializing a MolmoActLlmConfig
|
| 163 |
+
>>> configuration = MolmoActLlmConfig()
|
| 164 |
+
|
| 165 |
+
>>> # Initializing a MolmoActLlm (with random weights)
|
| 166 |
+
>>> model = MolmoActLlm(configuration)
|
| 167 |
+
|
| 168 |
+
>>> # Accessing the model configuration
|
| 169 |
+
>>> configuration = model.config
|
| 170 |
+
```"""
|
| 171 |
+
|
| 172 |
+
model_type = "molmoact_llm"
|
| 173 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 174 |
+
base_model_tp_plan = {
|
| 175 |
+
"blocks.*.self_attn.att_proj": "colwise",
|
| 176 |
+
"blocks.*.self_attn.attn_out": "rowwise",
|
| 177 |
+
"blocks.*.mlp.ff_proj": "colwise",
|
| 178 |
+
"blocks.*.mlp.ff_out": "rowwise",
|
| 179 |
+
}
|
| 180 |
+
base_model_pp_plan = {
|
| 181 |
+
"wte": (["input_ids"], ["inputs_embeds"]),
|
| 182 |
+
"blocks": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 183 |
+
"ln_f": (["hidden_states"], ["hidden_states"]),
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
def __init__(
|
| 187 |
+
self,
|
| 188 |
+
hidden_size: int = 3584,
|
| 189 |
+
num_attention_heads: int = 28,
|
| 190 |
+
num_key_value_heads: Optional[int] = 4,
|
| 191 |
+
head_dim: int = 128,
|
| 192 |
+
vocab_size: int = 152064,
|
| 193 |
+
additional_vocab_size: int = 128,
|
| 194 |
+
qkv_bias: bool = True,
|
| 195 |
+
num_hidden_layers: int = 48,
|
| 196 |
+
intermediate_size: int = 18944,
|
| 197 |
+
hidden_act: str = "silu",
|
| 198 |
+
embedding_dropout: float=0.0,
|
| 199 |
+
attention_dropout: float=0.0,
|
| 200 |
+
residual_dropout: float = 0.0,
|
| 201 |
+
max_position_embeddings: int = 4096,
|
| 202 |
+
rope_theta: float = 1000000.0,
|
| 203 |
+
rope_scaling: Dict[str, Any] = None,
|
| 204 |
+
use_qk_norm: bool = False,
|
| 205 |
+
qk_norm_type: str = "olmo",
|
| 206 |
+
layer_norm_eps: int = 1e-6,
|
| 207 |
+
norm_after: bool = False,
|
| 208 |
+
initializer_range: float = 0.02,
|
| 209 |
+
use_cache=True,
|
| 210 |
+
tie_word_embeddings=False,
|
| 211 |
+
**kwargs,
|
| 212 |
+
):
|
| 213 |
+
super().__init__(
|
| 214 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 215 |
+
**kwargs
|
| 216 |
+
)
|
| 217 |
+
self.hidden_size = hidden_size
|
| 218 |
+
self.num_attention_heads = num_attention_heads
|
| 219 |
+
if num_key_value_heads is None:
|
| 220 |
+
num_key_value_heads = num_attention_heads
|
| 221 |
+
self.num_key_value_heads = num_key_value_heads
|
| 222 |
+
self.head_dim = head_dim
|
| 223 |
+
self.vocab_size = vocab_size
|
| 224 |
+
self.additional_vocab_size = additional_vocab_size
|
| 225 |
+
self.qkv_bias = qkv_bias
|
| 226 |
+
self.num_hidden_layers = num_hidden_layers
|
| 227 |
+
self.intermediate_size = intermediate_size
|
| 228 |
+
self.hidden_act = hidden_act
|
| 229 |
+
self.embedding_dropout = embedding_dropout
|
| 230 |
+
self.attention_dropout = attention_dropout
|
| 231 |
+
self.residual_dropout = residual_dropout
|
| 232 |
+
self.max_position_embeddings = max_position_embeddings
|
| 233 |
+
self.rope_theta = rope_theta
|
| 234 |
+
self.rope_scaling = rope_scaling
|
| 235 |
+
self.use_qk_norm = use_qk_norm
|
| 236 |
+
self.qk_norm_type = qk_norm_type
|
| 237 |
+
self.layer_norm_eps = layer_norm_eps
|
| 238 |
+
self.norm_after = norm_after
|
| 239 |
+
self.initializer_range = initializer_range
|
| 240 |
+
self.use_cache = use_cache
|
| 241 |
+
|
| 242 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 243 |
+
rope_config_validation(self)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class MolmoActConfig(PretrainedConfig):
|
| 247 |
+
r"""
|
| 248 |
+
This is the configuration class to store the configuration of a [`MolmoActForActionReasoning`].
|
| 249 |
+
It is used to instantiate an MolmoAct model according to the specified arguments, defining the model architecture.
|
| 250 |
+
|
| 251 |
+
Example:
|
| 252 |
+
|
| 253 |
+
```python
|
| 254 |
+
>>> from transformers import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig
|
| 255 |
+
|
| 256 |
+
>>> # Initializing a MolmoActVitConfig
|
| 257 |
+
>>> vit_config = MolmoActVitConfig()
|
| 258 |
+
|
| 259 |
+
>>> # Initializing a MolmoActAdapterConfig
|
| 260 |
+
>>> adapter_config = MolmoActAdapterConfig()
|
| 261 |
+
|
| 262 |
+
>>> # Initializing a MolmoActLlmConfig
|
| 263 |
+
>>> llm_config = MolmoActLlmConfig()
|
| 264 |
+
|
| 265 |
+
>>> # Initializing a MolmoActConfig
|
| 266 |
+
>>> configuration = MolmoActConfig(vit_config, adapter_config, llm_config, image_patch_id=152069)
|
| 267 |
+
|
| 268 |
+
>>> # Initializing a model
|
| 269 |
+
>>> model = MolmoActForActionReasoning(configuration)
|
| 270 |
+
|
| 271 |
+
>>> # Accessing the model configuration
|
| 272 |
+
>>> configuration = model.config
|
| 273 |
+
```"""
|
| 274 |
+
|
| 275 |
+
model_type = "molmoact"
|
| 276 |
+
sub_configs = {
|
| 277 |
+
"llm_config": MolmoActLlmConfig,
|
| 278 |
+
"vit_config": MolmoActVitConfig,
|
| 279 |
+
"adapter_config": MolmoActAdapterConfig,
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
def __init__(
|
| 283 |
+
self,
|
| 284 |
+
vit_config: MolmoActVitConfig = None,
|
| 285 |
+
adapter_config: MolmoActAdapterConfig = None,
|
| 286 |
+
llm_config: MolmoActLlmConfig = None,
|
| 287 |
+
image_patch_id: int = None,
|
| 288 |
+
initializer_range: float = 0.02,
|
| 289 |
+
n_action_bins: int = 256,
|
| 290 |
+
norm_stats: dict = {},
|
| 291 |
+
**kwargs,
|
| 292 |
+
):
|
| 293 |
+
super().__init__(**kwargs)
|
| 294 |
+
if vit_config is None:
|
| 295 |
+
self.vit_config = MolmoActVitConfig()
|
| 296 |
+
elif isinstance(vit_config, dict):
|
| 297 |
+
self.vit_config = MolmoActVitConfig(**vit_config)
|
| 298 |
+
else:
|
| 299 |
+
self.vit_config = vit_config
|
| 300 |
+
if adapter_config is None:
|
| 301 |
+
self.adapter_config = MolmoActAdapterConfig()
|
| 302 |
+
elif isinstance(adapter_config, dict):
|
| 303 |
+
self.adapter_config = MolmoActAdapterConfig(**adapter_config)
|
| 304 |
+
else:
|
| 305 |
+
self.adapter_config = adapter_config
|
| 306 |
+
if llm_config is None:
|
| 307 |
+
self.llm_config = MolmoActLlmConfig()
|
| 308 |
+
elif isinstance(llm_config, dict):
|
| 309 |
+
self.llm_config = MolmoActLlmConfig(**llm_config)
|
| 310 |
+
else:
|
| 311 |
+
self.llm_config = llm_config
|
| 312 |
+
self.image_patch_id = image_patch_id
|
| 313 |
+
self.initializer_range = initializer_range
|
| 314 |
+
|
| 315 |
+
self.n_action_bins = n_action_bins
|
| 316 |
+
self.norm_stats = norm_stats
|
| 317 |
+
|
| 318 |
+
@property
|
| 319 |
+
def image_num_patch(self):
|
| 320 |
+
assert self.vit_config is not None
|
| 321 |
+
return self.vit_config.image_num_patch
|
| 322 |
+
|
| 323 |
+
@property
|
| 324 |
+
def num_attention_heads(self):
|
| 325 |
+
return self.llm_config.num_attention_heads
|
| 326 |
+
|
| 327 |
+
@property
|
| 328 |
+
def num_key_value_heads(self):
|
| 329 |
+
return self.llm_config.num_key_value_heads
|
| 330 |
+
|
| 331 |
+
@property
|
| 332 |
+
def head_dim(self):
|
| 333 |
+
return self.llm_config.head_dim
|
| 334 |
+
|
| 335 |
+
@property
|
| 336 |
+
def num_hidden_layers(self):
|
| 337 |
+
return self.llm_config.num_hidden_layers
|
| 338 |
+
|
| 339 |
+
@property
|
| 340 |
+
def hidden_size(self):
|
| 341 |
+
return self.llm_config.hidden_size
|
| 342 |
+
|
| 343 |
+
@property
|
| 344 |
+
def vocab_size(self):
|
| 345 |
+
return self.llm_config.vocab_size
|
| 346 |
+
|
| 347 |
+
@property
|
| 348 |
+
def max_position_embeddings(self):
|
| 349 |
+
return self.llm_config.max_position_embeddings
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
MolmoActVitConfig.register_for_auto_class()
|
| 353 |
+
MolmoActAdapterConfig.register_for_auto_class()
|
| 354 |
+
MolmoActLlmConfig.register_for_auto_class()
|
| 355 |
+
MolmoActConfig.register_for_auto_class()
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": 151643,
|
| 4 |
+
"pad_token_id": 151643,
|
| 5 |
+
"transformers_version": "4.52.3"
|
| 6 |
+
}
|
image_processing_molmoact.py
ADDED
|
@@ -0,0 +1,959 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Image processor class for MolmoAct"""
|
| 2 |
+
from typing import TYPE_CHECKING, Tuple, List, Optional, Union, Dict, Any
|
| 3 |
+
import numpy as np
|
| 4 |
+
import einops
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms
|
| 7 |
+
from torchvision.transforms import InterpolationMode
|
| 8 |
+
from torchvision.transforms.functional import convert_image_dtype
|
| 9 |
+
|
| 10 |
+
from transformers.image_utils import (
|
| 11 |
+
OPENAI_CLIP_MEAN,
|
| 12 |
+
OPENAI_CLIP_STD,
|
| 13 |
+
ChannelDimension,
|
| 14 |
+
ImageInput,
|
| 15 |
+
is_valid_image,
|
| 16 |
+
valid_images,
|
| 17 |
+
to_numpy_array,
|
| 18 |
+
)
|
| 19 |
+
from transformers.image_transforms import convert_to_rgb, to_channel_dimension_format
|
| 20 |
+
from transformers.processing_utils import ImagesKwargs
|
| 21 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 24 |
+
from transformers.utils import TensorType, logging
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if TYPE_CHECKING:
|
| 28 |
+
from transformers.utils import TensorType, logging
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def is_multi_image(image: Union[ImageInput, List[ImageInput]]) -> bool:
|
| 35 |
+
return isinstance(image, (list, tuple))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def make_batched_images(images) -> List[ImageInput]:
|
| 39 |
+
"""
|
| 40 |
+
Accepts images in list or nested list format.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 44 |
+
The input image.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
list: A list of images or a list of lists of images.
|
| 48 |
+
"""
|
| 49 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 50 |
+
return images
|
| 51 |
+
|
| 52 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 53 |
+
return images
|
| 54 |
+
|
| 55 |
+
elif is_valid_image(images):
|
| 56 |
+
return [images]
|
| 57 |
+
|
| 58 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def normalize_image(image: np.ndarray, normalize_mode: str) -> np.ndarray:
|
| 62 |
+
if normalize_mode == "openai":
|
| 63 |
+
image -= np.array(OPENAI_CLIP_MEAN, dtype=np.float32)[None, None, :]
|
| 64 |
+
image /= np.array(OPENAI_CLIP_STD, dtype=np.float32)[None, None, :]
|
| 65 |
+
elif normalize_mode == "siglip":
|
| 66 |
+
image = np.asarray(-1.0, dtype=np.float32) + image * np.asarray(2.0, dtype=np.float32)
|
| 67 |
+
elif normalize_mode == "dino":
|
| 68 |
+
image -= np.array([0.485, 0.456, 0.406], dtype=np.float32)[None, None, :]
|
| 69 |
+
image /= np.array([0.229, 0.224, 0.225], dtype=np.float32)[None, None, :]
|
| 70 |
+
else:
|
| 71 |
+
raise NotImplementedError(normalize_mode)
|
| 72 |
+
return image
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# Helper to ensure output_size is a 2-tuple of built-in Python ints
|
| 76 |
+
def _ensure_pyint_size2(size):
|
| 77 |
+
"""
|
| 78 |
+
Ensure `size` is a 2-tuple of built-in Python ints.
|
| 79 |
+
Accepts int, list/tuple, or numpy array of length 1 or 2.
|
| 80 |
+
"""
|
| 81 |
+
import numpy as np
|
| 82 |
+
# If it's an array-like, normalize to length-2 tuple
|
| 83 |
+
if isinstance(size, (list, tuple, np.ndarray)):
|
| 84 |
+
if len(size) == 2:
|
| 85 |
+
return (int(size[0]), int(size[1]))
|
| 86 |
+
elif len(size) == 1:
|
| 87 |
+
s = int(size[0])
|
| 88 |
+
return (s, s)
|
| 89 |
+
else:
|
| 90 |
+
# Fallback: try to interpret as square size using first element
|
| 91 |
+
s = int(size[0])
|
| 92 |
+
return (s, s)
|
| 93 |
+
# Scalar → square size
|
| 94 |
+
s = int(size)
|
| 95 |
+
return (s, s)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def resize_and_pad(
|
| 99 |
+
image,
|
| 100 |
+
desired_output_size,
|
| 101 |
+
resize_method="torch-bilinear",
|
| 102 |
+
pad_value=0,
|
| 103 |
+
):
|
| 104 |
+
"""Resize an image while padding to preserve uts aspect ratio."""
|
| 105 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
| 106 |
+
desired_height, desired_width = desired_output_size
|
| 107 |
+
height, width = image.shape[:2]
|
| 108 |
+
|
| 109 |
+
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
|
| 110 |
+
# the results after rounding.
|
| 111 |
+
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
|
| 112 |
+
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
|
| 113 |
+
image_scale = min(image_scale_x, image_scale_y)
|
| 114 |
+
scaled_height = int(np.array(height, np.float32) * image_scale)
|
| 115 |
+
scaled_width = int(np.array(width, np.float32) * image_scale)
|
| 116 |
+
|
| 117 |
+
if resize_method in ["torch-bilinear"]:
|
| 118 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
| 119 |
+
image = convert_image_dtype(image) # resize in float32 to match the training code
|
| 120 |
+
mode = InterpolationMode.BILINEAR
|
| 121 |
+
image = torchvision.transforms.Resize([scaled_height, scaled_width], mode, antialias=True)(image)
|
| 122 |
+
image = torch.clip(image, 0.0, 1.0)
|
| 123 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
| 124 |
+
else:
|
| 125 |
+
raise NotImplementedError(resize_method)
|
| 126 |
+
|
| 127 |
+
top_pad = (desired_height - scaled_height) // 2
|
| 128 |
+
left_pad = (desired_width - scaled_width) // 2
|
| 129 |
+
padding = [
|
| 130 |
+
[top_pad, desired_height - scaled_height - top_pad],
|
| 131 |
+
[left_pad, desired_width - scaled_width - left_pad],
|
| 132 |
+
[0, 0]
|
| 133 |
+
]
|
| 134 |
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
| 135 |
+
image = np.pad(image, padding, constant_values=pad_value)
|
| 136 |
+
return image, image_mask
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def metaclip_resize(image, desired_output_size):
|
| 140 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
| 141 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
| 142 |
+
if torch.is_floating_point(image):
|
| 143 |
+
image = torchvision.transforms.Resize(
|
| 144 |
+
desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image)
|
| 145 |
+
image = torch.clip(image, 0.0, 1.0)
|
| 146 |
+
else:
|
| 147 |
+
assert image.dtype == torch.uint8, "Expected float images or uint8 images, but got {}".format(image.dtype)
|
| 148 |
+
image = torchvision.transforms.Resize(
|
| 149 |
+
desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image)
|
| 150 |
+
image = image.to(torch.float32)
|
| 151 |
+
image = torch.clip(image, 0, 255)
|
| 152 |
+
image = image / 255.0
|
| 153 |
+
resized = torch.permute(image, [1, 2, 0]).numpy()
|
| 154 |
+
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
|
| 155 |
+
return resized, image_mask
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def siglip_resize_and_pad(
|
| 159 |
+
image: np.ndarray,
|
| 160 |
+
desired_output_size: Tuple[int, int],
|
| 161 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 162 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
| 163 |
+
if len(image.shape) == 3:
|
| 164 |
+
is_video = False
|
| 165 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
| 166 |
+
else:
|
| 167 |
+
is_video = True
|
| 168 |
+
image = torch.permute(torch.from_numpy(image), [0, 3, 1, 2])
|
| 169 |
+
dtype = image.dtype
|
| 170 |
+
if torch.is_floating_point(image):
|
| 171 |
+
in_min = 0.0
|
| 172 |
+
in_max = 1.0
|
| 173 |
+
resized = torchvision.transforms.Resize(
|
| 174 |
+
desired_output_size,
|
| 175 |
+
InterpolationMode.BILINEAR,
|
| 176 |
+
antialias=False,
|
| 177 |
+
)(image)
|
| 178 |
+
resized = torch.clip(resized, 0.0, 1.0).to(dtype)
|
| 179 |
+
else:
|
| 180 |
+
assert image.dtype == torch.uint8, "SigLIP expects float images or uint8 images, but got {}".format(image.dtype)
|
| 181 |
+
in_min = 0.0
|
| 182 |
+
in_max = 255.0
|
| 183 |
+
resized = torchvision.transforms.Resize(
|
| 184 |
+
desired_output_size,
|
| 185 |
+
InterpolationMode.BILINEAR,
|
| 186 |
+
antialias=False,
|
| 187 |
+
)(image)
|
| 188 |
+
resized = torch.clip(resized, 0, 255).to(dtype)
|
| 189 |
+
|
| 190 |
+
resized = resized.to(torch.float32)
|
| 191 |
+
resized = (resized - in_min) / (in_max - in_min)
|
| 192 |
+
|
| 193 |
+
if is_video:
|
| 194 |
+
resized = torch.permute(resized, [0, 2, 3, 1]).numpy()
|
| 195 |
+
image_mask = None
|
| 196 |
+
else:
|
| 197 |
+
resized = torch.permute(resized, [1, 2, 0]).numpy()
|
| 198 |
+
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
|
| 199 |
+
|
| 200 |
+
return resized, image_mask
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def dino_resize_and_pad(
|
| 204 |
+
image: np.ndarray,
|
| 205 |
+
desired_output_size: Tuple[int, int],
|
| 206 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 207 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
| 208 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
| 209 |
+
dtype = image.dtype
|
| 210 |
+
if torch.is_floating_point(image):
|
| 211 |
+
resized = torchvision.transforms.Resize(
|
| 212 |
+
desired_output_size,
|
| 213 |
+
InterpolationMode.BICUBIC,
|
| 214 |
+
antialias=True,
|
| 215 |
+
)(image)
|
| 216 |
+
resized = torch.clip(resized, 0.0, 1.0).to(torch.float32)
|
| 217 |
+
else:
|
| 218 |
+
assert image.dtype == torch.uint8, "DINOv2 expects float images or uint8 images, but got {}".format(image.dtype)
|
| 219 |
+
resized = torchvision.transforms.Resize(
|
| 220 |
+
desired_output_size,
|
| 221 |
+
InterpolationMode.BICUBIC,
|
| 222 |
+
antialias=True,
|
| 223 |
+
)(image)
|
| 224 |
+
resized = torch.clip(resized, 0, 255).to(torch.float32)
|
| 225 |
+
resized = resized / 255.0
|
| 226 |
+
|
| 227 |
+
resized = torch.permute(resized, [1, 2, 0]).numpy()
|
| 228 |
+
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
|
| 229 |
+
|
| 230 |
+
return resized, image_mask
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def resize_image(
|
| 234 |
+
image: np.ndarray,
|
| 235 |
+
resize_mode: str,
|
| 236 |
+
output_size: Tuple[int, int],
|
| 237 |
+
pad_value: float,
|
| 238 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 239 |
+
if resize_mode == "siglip":
|
| 240 |
+
return siglip_resize_and_pad(image, output_size)
|
| 241 |
+
elif resize_mode == "dino":
|
| 242 |
+
return dino_resize_and_pad(image, output_size)
|
| 243 |
+
elif resize_mode == "metaclip":
|
| 244 |
+
return metaclip_resize(image, output_size)
|
| 245 |
+
else:
|
| 246 |
+
resize = "torch-bilinear" if resize_mode == "default" else resize_mode
|
| 247 |
+
return resize_and_pad(
|
| 248 |
+
image, output_size, resize_method=resize, pad_value=pad_value,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def select_tiling(h, w, patch_size, max_num_crops):
|
| 253 |
+
"""Divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
| 254 |
+
original_size = np.stack([h, w]) # [1, 2]
|
| 255 |
+
original_res = h * w
|
| 256 |
+
tilings = []
|
| 257 |
+
for i in range(1, max_num_crops + 1):
|
| 258 |
+
for j in range(1, max_num_crops + 1):
|
| 259 |
+
if i*j <= max_num_crops:
|
| 260 |
+
tilings.append((i, j))
|
| 261 |
+
# sort so argmin and argmax favour smaller tilings in the event of a tie
|
| 262 |
+
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
|
| 263 |
+
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
|
| 264 |
+
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
|
| 265 |
+
|
| 266 |
+
# How much we would need to scale the image to fit exactly in each tiling
|
| 267 |
+
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
|
| 268 |
+
|
| 269 |
+
# The original size can be zero in rare cases if the image is smaller than the margin
|
| 270 |
+
# In those cases letting the scale become infinite means the tiling is based on the
|
| 271 |
+
# other side, or falls back to the smallest tiling
|
| 272 |
+
with np.errstate(divide='ignore'):
|
| 273 |
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size,
|
| 274 |
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
|
| 275 |
+
if np.all(required_scale < 1):
|
| 276 |
+
# We are forced to downscale, so try to minimize the amount of downscaling
|
| 277 |
+
ix = np.argmax(required_scale)
|
| 278 |
+
else:
|
| 279 |
+
# Pick the resolution that required the least upscaling so that it most closely fits the image
|
| 280 |
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
| 281 |
+
ix = np.argmin(required_scale)
|
| 282 |
+
return candidate_tilings[ix]
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def build_resized_image(
|
| 286 |
+
image: np.ndarray,
|
| 287 |
+
resize_mode: str,
|
| 288 |
+
normalized_mode: str,
|
| 289 |
+
base_image_input_size: List[int],
|
| 290 |
+
pad_value: float,
|
| 291 |
+
image_patch_size: int,
|
| 292 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 293 |
+
resized, resized_mask = resize_image(
|
| 294 |
+
image, resize_mode, base_image_input_size, pad_value,
|
| 295 |
+
)
|
| 296 |
+
resized = normalize_image(resized, normalized_mode)
|
| 297 |
+
if len(resized.shape) == 3:
|
| 298 |
+
resized = np.expand_dims(resized, 0)
|
| 299 |
+
resized_mask = np.expand_dims(resized_mask, 0)
|
| 300 |
+
crop_patch_w = base_image_input_size[1] // image_patch_size
|
| 301 |
+
crop_patch_h = base_image_input_size[0] // image_patch_size
|
| 302 |
+
resize_idx = np.arange(crop_patch_w*crop_patch_h).reshape([crop_patch_h, crop_patch_w])
|
| 303 |
+
return resized, resized_mask, resize_idx
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def build_overlapping_crops(
|
| 307 |
+
image: np.ndarray,
|
| 308 |
+
resize_mode: str,
|
| 309 |
+
normalize_mode: str,
|
| 310 |
+
max_crops: int,
|
| 311 |
+
overlap_margins: List[int],
|
| 312 |
+
base_image_input_size: List[int],
|
| 313 |
+
pad_value: float,
|
| 314 |
+
image_patch_size: int,
|
| 315 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 316 |
+
"""Decompose an image into a set of overlapping crops
|
| 317 |
+
|
| 318 |
+
:return crop_arr: [n_crops, h, w, 3] The crops
|
| 319 |
+
:return mask_arr: [n_crops, h, w] The padding masks
|
| 320 |
+
:return patch_idx: [overlap_patch_h, overlap_patch_w] For each patch in the resized image
|
| 321 |
+
the crops were extracted from, what patch in `crop_arr` it corresponds to
|
| 322 |
+
"""
|
| 323 |
+
original_image_h, original_image_w = image.shape[:2]
|
| 324 |
+
crop_size = base_image_input_size[0]
|
| 325 |
+
assert base_image_input_size[0] == base_image_input_size[1]
|
| 326 |
+
|
| 327 |
+
left_margin, right_margin = overlap_margins
|
| 328 |
+
total_margin_pixels = image_patch_size * (right_margin + left_margin) # pixels removed per dim
|
| 329 |
+
crop_patches = base_image_input_size[0] // image_patch_size # patches per crop dim
|
| 330 |
+
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
|
| 331 |
+
crop_window_size = crop_window_patches * image_patch_size
|
| 332 |
+
crop_patch_w = base_image_input_size[1] // image_patch_size
|
| 333 |
+
crop_patch_h = base_image_input_size[0] // image_patch_size
|
| 334 |
+
original_image_h, original_image_w = image.shape[:2]
|
| 335 |
+
crop_size = base_image_input_size[0]
|
| 336 |
+
|
| 337 |
+
# Decide how to tile the image, to account for the overlap margins we compute the tiling
|
| 338 |
+
# as if we had an image without the margins and were using a crop size without the margins
|
| 339 |
+
tiling = select_tiling(
|
| 340 |
+
original_image_h - total_margin_pixels,
|
| 341 |
+
original_image_w - total_margin_pixels,
|
| 342 |
+
crop_window_size,
|
| 343 |
+
max_crops,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
src, img_mask = resize_image(
|
| 347 |
+
image,
|
| 348 |
+
resize_mode,
|
| 349 |
+
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels],
|
| 350 |
+
pad_value,
|
| 351 |
+
)
|
| 352 |
+
src = normalize_image(src, normalize_mode)
|
| 353 |
+
|
| 354 |
+
# Now we have to split the image into crops, and track what patches came from
|
| 355 |
+
# where in `patch_idx_arr`
|
| 356 |
+
n_crops = tiling[0] * tiling[1]
|
| 357 |
+
crop_arr = np.zeros([n_crops, crop_size, crop_size, 3], dtype=src.dtype)
|
| 358 |
+
mask_arr = np.zeros([n_crops, crop_size, crop_size], dtype=img_mask.dtype)
|
| 359 |
+
patch_idx_arr = np.zeros([n_crops, crop_patch_h, crop_patch_w], dtype=np.int32)
|
| 360 |
+
on = 0
|
| 361 |
+
on_crop = 0
|
| 362 |
+
for i in range(tiling[0]):
|
| 363 |
+
# Slide over `src` by `crop_window_size` steps, but extract crops of size `crops_size`
|
| 364 |
+
# which results in overlapping crop windows
|
| 365 |
+
y0 = i*crop_window_size
|
| 366 |
+
for j in range(tiling[1]):
|
| 367 |
+
x0 = j*crop_window_size
|
| 368 |
+
crop_arr[on_crop] = src[y0:y0+crop_size, x0:x0+crop_size]
|
| 369 |
+
mask_arr[on_crop] = img_mask[y0:y0+crop_size, x0:x0+crop_size]
|
| 370 |
+
patch_idx = np.arange(crop_patch_w*crop_patch_h).reshape(crop_patch_h, crop_patch_w)
|
| 371 |
+
patch_idx += on_crop * crop_patch_h * crop_patch_w
|
| 372 |
+
|
| 373 |
+
# Mask out idx that are in the overlap region
|
| 374 |
+
if i != 0:
|
| 375 |
+
patch_idx[:left_margin, :] = -1
|
| 376 |
+
if j != 0:
|
| 377 |
+
patch_idx[:, :left_margin] = -1
|
| 378 |
+
if i != tiling[0]-1:
|
| 379 |
+
patch_idx[-right_margin:, :] = -1
|
| 380 |
+
if j != tiling[1]-1:
|
| 381 |
+
patch_idx[:, -right_margin:] = -1
|
| 382 |
+
patch_idx_arr[on_crop] = patch_idx
|
| 383 |
+
on_crop += 1
|
| 384 |
+
|
| 385 |
+
# `patch_idx_arr` is ordered crop-by-crop, here we transpose `patch_idx_arr`
|
| 386 |
+
# so it is ordered left-to-right order
|
| 387 |
+
patch_idx_arr = np.reshape(
|
| 388 |
+
patch_idx_arr,
|
| 389 |
+
[tiling[0], tiling[1], crop_patch_h, crop_patch_w]
|
| 390 |
+
)
|
| 391 |
+
patch_idx_arr = np.transpose(patch_idx_arr, [0, 2, 1, 3])
|
| 392 |
+
patch_idx_arr = np.reshape(patch_idx_arr, [-1])
|
| 393 |
+
|
| 394 |
+
# Now get the parts not in the overlap region, so it should map each patch in `src`
|
| 395 |
+
# to the correct patch it should come from in `crop_arr`
|
| 396 |
+
patch_idx_arr = patch_idx_arr[patch_idx_arr >= 0].reshape(
|
| 397 |
+
src.shape[0]//image_patch_size,
|
| 398 |
+
src.shape[1]//image_patch_size,
|
| 399 |
+
)
|
| 400 |
+
return crop_arr, mask_arr, patch_idx_arr
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
def batch_pixels_to_patches(array: np.ndarray, patch_size: int) -> np.ndarray:
|
| 404 |
+
"""Reshape images of [n_images, h, w, 3] -> [n_images, n_patches, pixels_per_patch]"""
|
| 405 |
+
if len(array.shape) == 3:
|
| 406 |
+
n_crops, h, w = array.shape
|
| 407 |
+
h_patches = h//patch_size
|
| 408 |
+
w_patches = w//patch_size
|
| 409 |
+
array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size])
|
| 410 |
+
array = np.transpose(array, [0, 1, 3, 2, 4])
|
| 411 |
+
array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size])
|
| 412 |
+
return array
|
| 413 |
+
else:
|
| 414 |
+
n_crops, h, w, c = array.shape
|
| 415 |
+
h_patches = h//patch_size
|
| 416 |
+
w_patches = w//patch_size
|
| 417 |
+
array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size, c])
|
| 418 |
+
array = np.transpose(array, [0, 1, 3, 2, 4, 5])
|
| 419 |
+
array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size*c])
|
| 420 |
+
return array
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def arange_for_pooling(
|
| 424 |
+
idx_arr: np.ndarray,
|
| 425 |
+
pool_h: int,
|
| 426 |
+
pool_w: int,
|
| 427 |
+
) -> np.ndarray:
|
| 428 |
+
h_pad = pool_h * ((idx_arr.shape[0] + pool_h - 1) // pool_h) - idx_arr.shape[0]
|
| 429 |
+
w_pad = pool_w * ((idx_arr.shape[1] + pool_w - 1) // pool_w) - idx_arr.shape[1]
|
| 430 |
+
idx_arr = np.pad(idx_arr, [[h_pad//2, (h_pad+1)//2], [w_pad//2, (w_pad+1)//2]],
|
| 431 |
+
mode='constant',constant_values=-1)
|
| 432 |
+
return einops.rearrange(
|
| 433 |
+
idx_arr, "(h dh) (w dw) -> h w (dh dw)", dh=pool_h, dw=pool_w)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def image_to_patches_and_grids(
|
| 437 |
+
image: ImageInput,
|
| 438 |
+
crop_mode: str,
|
| 439 |
+
resize_mode: str,
|
| 440 |
+
normalize_mode: str,
|
| 441 |
+
max_crops: int,
|
| 442 |
+
overlap_margins: List[int],
|
| 443 |
+
base_image_input_size: List[int],
|
| 444 |
+
pad_value: float,
|
| 445 |
+
image_patch_size: int,
|
| 446 |
+
image_pooling_w: int,
|
| 447 |
+
image_pooling_h: int,
|
| 448 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
| 449 |
+
"""
|
| 450 |
+
:return image_grids, the shape of each (low-res, high-res) image after pooling
|
| 451 |
+
:return crops, the image crops to processes with the ViT
|
| 452 |
+
:return mask, the padding mask for each crop
|
| 453 |
+
:return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the
|
| 454 |
+
patches in `crops` to pool for that token, masked with -1
|
| 455 |
+
"""
|
| 456 |
+
if isinstance(base_image_input_size, int):
|
| 457 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
| 458 |
+
|
| 459 |
+
base_image_input_d = image_patch_size
|
| 460 |
+
pooling_w = image_pooling_w
|
| 461 |
+
pooling_h = image_pooling_h
|
| 462 |
+
crop_patch_w = base_image_input_size[1] // base_image_input_d
|
| 463 |
+
crop_patch_h = base_image_input_size[0] // base_image_input_d
|
| 464 |
+
|
| 465 |
+
if crop_mode == "resize":
|
| 466 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
| 467 |
+
image,
|
| 468 |
+
resize_mode,
|
| 469 |
+
normalize_mode,
|
| 470 |
+
base_image_input_size,
|
| 471 |
+
pad_value,
|
| 472 |
+
image_patch_size
|
| 473 |
+
)
|
| 474 |
+
pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
| 475 |
+
h, w = pooling_idx.shape[:2]
|
| 476 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
| 477 |
+
image_grid = [np.array([h, w])]
|
| 478 |
+
return (
|
| 479 |
+
np.stack(image_grid, 0),
|
| 480 |
+
batch_pixels_to_patches(resized, image_patch_size),
|
| 481 |
+
batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1),
|
| 482 |
+
pooling_idx,
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]:
|
| 486 |
+
crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops(
|
| 487 |
+
image,
|
| 488 |
+
resize_mode,
|
| 489 |
+
normalize_mode,
|
| 490 |
+
max_crops,
|
| 491 |
+
overlap_margins,
|
| 492 |
+
base_image_input_size,
|
| 493 |
+
pad_value,
|
| 494 |
+
image_patch_size,
|
| 495 |
+
)
|
| 496 |
+
pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w)
|
| 497 |
+
h, w = pooling_idx.shape[:2]
|
| 498 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
| 499 |
+
image_grid = [np.array([h, w])]
|
| 500 |
+
|
| 501 |
+
if crop_mode == "overlap-and-resize":
|
| 502 |
+
crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size)
|
| 503 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
| 504 |
+
return np.stack(image_grid, 0), crop_arr, mask_arr, pooling_idx
|
| 505 |
+
|
| 506 |
+
# Finally do the same for the global image
|
| 507 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
| 508 |
+
image,
|
| 509 |
+
resize_mode,
|
| 510 |
+
normalize_mode,
|
| 511 |
+
base_image_input_size,
|
| 512 |
+
pad_value,
|
| 513 |
+
image_patch_size
|
| 514 |
+
)
|
| 515 |
+
crop_arr = np.concatenate([resized, crop_arr], 0)
|
| 516 |
+
|
| 517 |
+
mask_arr = np.concatenate([resized_mask, mask_arr], 0)
|
| 518 |
+
|
| 519 |
+
resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
| 520 |
+
h, w = resize_idx.shape[:2]
|
| 521 |
+
resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w])
|
| 522 |
+
|
| 523 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
| 524 |
+
pooling_idx = np.where(
|
| 525 |
+
pooling_idx >= 0,
|
| 526 |
+
pooling_idx + crop_patch_h*crop_patch_w,
|
| 527 |
+
-1
|
| 528 |
+
)
|
| 529 |
+
pooling_idx = np.concatenate([resize_idx, pooling_idx])
|
| 530 |
+
image_grid = [
|
| 531 |
+
np.array([h, w]),
|
| 532 |
+
] + image_grid
|
| 533 |
+
|
| 534 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
| 535 |
+
return (
|
| 536 |
+
np.stack(image_grid, 0),
|
| 537 |
+
batch_pixels_to_patches(crop_arr, image_patch_size),
|
| 538 |
+
mask_arr,
|
| 539 |
+
pooling_idx
|
| 540 |
+
)
|
| 541 |
+
else:
|
| 542 |
+
raise NotImplementedError(crop_mode)
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def image_to_patches_and_tokens(
|
| 546 |
+
image: ImageInput,
|
| 547 |
+
crop_mode: str,
|
| 548 |
+
use_col_tokens: bool,
|
| 549 |
+
resize_mode: str,
|
| 550 |
+
normalize_mode: str,
|
| 551 |
+
max_crops: int,
|
| 552 |
+
overlap_margins: List[int],
|
| 553 |
+
base_image_input_size: List[int],
|
| 554 |
+
pad_value: float,
|
| 555 |
+
image_patch_size: int,
|
| 556 |
+
image_pooling_w: int,
|
| 557 |
+
image_pooling_h: int,
|
| 558 |
+
image_patch_token_id: int,
|
| 559 |
+
image_col_token_id: int,
|
| 560 |
+
image_start_token_id: int,
|
| 561 |
+
image_end_token_id: int,
|
| 562 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
| 563 |
+
"""
|
| 564 |
+
:return image_tokens, the token IDS for this image, including special tokens
|
| 565 |
+
:return crops, the image crops to processes with the ViT
|
| 566 |
+
:return mask, the padding mask for each crop
|
| 567 |
+
:return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the
|
| 568 |
+
patches in `crops` to pool for that token, masked with -1
|
| 569 |
+
"""
|
| 570 |
+
|
| 571 |
+
if isinstance(base_image_input_size, int):
|
| 572 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
| 573 |
+
|
| 574 |
+
base_image_input_d = image_patch_size
|
| 575 |
+
pooling_w = image_pooling_w
|
| 576 |
+
pooling_h = image_pooling_h
|
| 577 |
+
patch_id = image_patch_token_id
|
| 578 |
+
col_id = image_col_token_id
|
| 579 |
+
start_id = image_start_token_id
|
| 580 |
+
end_id = image_end_token_id
|
| 581 |
+
crop_patch_w = base_image_input_size[1] // base_image_input_d
|
| 582 |
+
crop_patch_h = base_image_input_size[0] // base_image_input_d
|
| 583 |
+
|
| 584 |
+
if crop_mode == "resize":
|
| 585 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
| 586 |
+
image,
|
| 587 |
+
resize_mode,
|
| 588 |
+
normalize_mode,
|
| 589 |
+
base_image_input_size,
|
| 590 |
+
pad_value,
|
| 591 |
+
image_patch_size
|
| 592 |
+
)
|
| 593 |
+
pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
| 594 |
+
h, w = pooling_idx.shape[:2]
|
| 595 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
| 596 |
+
per_row = np.full(
|
| 597 |
+
(w,),
|
| 598 |
+
patch_id,
|
| 599 |
+
dtype=np.int32
|
| 600 |
+
)
|
| 601 |
+
if use_col_tokens:
|
| 602 |
+
per_row = np.concatenate([per_row, [col_id]], 0)
|
| 603 |
+
extra_tokens = np.tile(per_row, [h])
|
| 604 |
+
joint = [
|
| 605 |
+
[start_id],
|
| 606 |
+
extra_tokens,
|
| 607 |
+
[end_id],
|
| 608 |
+
]
|
| 609 |
+
return (
|
| 610 |
+
np.concatenate(joint, 0),
|
| 611 |
+
batch_pixels_to_patches(resized, image_patch_size),
|
| 612 |
+
batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1),
|
| 613 |
+
pooling_idx,
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]:
|
| 617 |
+
crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops(
|
| 618 |
+
image,
|
| 619 |
+
resize_mode,
|
| 620 |
+
normalize_mode,
|
| 621 |
+
max_crops,
|
| 622 |
+
overlap_margins,
|
| 623 |
+
base_image_input_size,
|
| 624 |
+
pad_value,
|
| 625 |
+
image_patch_size,
|
| 626 |
+
)
|
| 627 |
+
pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w)
|
| 628 |
+
h, w = pooling_idx.shape[:2]
|
| 629 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
| 630 |
+
|
| 631 |
+
# Now build the output tokens
|
| 632 |
+
per_row = np.full(w, patch_id, dtype=np.int32)
|
| 633 |
+
if use_col_tokens:
|
| 634 |
+
per_row = np.concatenate([per_row, [col_id]], 0)
|
| 635 |
+
joint = np.tile(per_row, [h])
|
| 636 |
+
joint = [
|
| 637 |
+
[start_id],
|
| 638 |
+
joint,
|
| 639 |
+
[end_id]
|
| 640 |
+
]
|
| 641 |
+
|
| 642 |
+
if crop_mode == "overlap-and-resize":
|
| 643 |
+
crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size)
|
| 644 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
| 645 |
+
return np.concatenate(joint, 0), crop_arr, mask_arr, pooling_idx
|
| 646 |
+
|
| 647 |
+
# Finally do the same for the global image
|
| 648 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
| 649 |
+
image,
|
| 650 |
+
resize_mode,
|
| 651 |
+
normalize_mode,
|
| 652 |
+
base_image_input_size,
|
| 653 |
+
pad_value,
|
| 654 |
+
image_patch_size
|
| 655 |
+
)
|
| 656 |
+
crop_arr = np.concatenate([resized, crop_arr], 0)
|
| 657 |
+
|
| 658 |
+
mask_arr = np.concatenate([resized_mask, mask_arr], 0)
|
| 659 |
+
|
| 660 |
+
resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
| 661 |
+
h, w = resize_idx.shape[:2]
|
| 662 |
+
resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w])
|
| 663 |
+
|
| 664 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
| 665 |
+
pooling_idx = np.where(
|
| 666 |
+
pooling_idx >= 0,
|
| 667 |
+
pooling_idx + crop_patch_h*crop_patch_w,
|
| 668 |
+
-1
|
| 669 |
+
)
|
| 670 |
+
pooling_idx = np.concatenate([resize_idx, pooling_idx])
|
| 671 |
+
|
| 672 |
+
per_row = np.full(
|
| 673 |
+
(w,),
|
| 674 |
+
patch_id,
|
| 675 |
+
dtype=np.int32
|
| 676 |
+
)
|
| 677 |
+
if use_col_tokens:
|
| 678 |
+
per_row = np.concatenate([per_row, [col_id]], 0)
|
| 679 |
+
extra_tokens = np.tile(per_row, [h])
|
| 680 |
+
joint = [
|
| 681 |
+
[start_id],
|
| 682 |
+
extra_tokens,
|
| 683 |
+
[end_id],
|
| 684 |
+
] + joint
|
| 685 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
| 686 |
+
return (
|
| 687 |
+
np.concatenate(joint, 0),
|
| 688 |
+
batch_pixels_to_patches(crop_arr, image_patch_size),
|
| 689 |
+
mask_arr,
|
| 690 |
+
pooling_idx
|
| 691 |
+
)
|
| 692 |
+
else:
|
| 693 |
+
raise NotImplementedError(crop_mode)
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
class MolmoActImagesKwargs(ImagesKwargs, total=False):
|
| 697 |
+
crop_mode: Optional[str]
|
| 698 |
+
resize_mode: Optional[str]
|
| 699 |
+
normalize_mode: Optional[str]
|
| 700 |
+
max_crops: Optional[int]
|
| 701 |
+
max_multi_image_crops: Optional[int]
|
| 702 |
+
overlap_margins: Optional[List[int]]
|
| 703 |
+
base_image_input_size: Optional[List[int]]
|
| 704 |
+
pad_value: Optional[float]
|
| 705 |
+
image_patch_size: Optional[int]
|
| 706 |
+
image_pooling_w: Optional[int]
|
| 707 |
+
image_pooling_h: Optional[int]
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
class MolmoActImageProcessor(BaseImageProcessor):
|
| 711 |
+
|
| 712 |
+
model_input_names = ["images", "pooled_patches_idx", "image_masks"]
|
| 713 |
+
|
| 714 |
+
def __init__(
|
| 715 |
+
self,
|
| 716 |
+
crop_mode: str = "overlap-and-resize-c2",
|
| 717 |
+
resize_mode: str = "siglip",
|
| 718 |
+
normalize_mode: str = "siglip",
|
| 719 |
+
max_crops: int = 8,
|
| 720 |
+
max_multi_image_crops: int = 4,
|
| 721 |
+
overlap_margins: List[int] = [4, 4],
|
| 722 |
+
base_image_input_size: List[int] = (378, 378),
|
| 723 |
+
pad_value: float = 0.0,
|
| 724 |
+
image_patch_size: int = 14,
|
| 725 |
+
image_pooling_w: int = 2,
|
| 726 |
+
image_pooling_h: int = 2,
|
| 727 |
+
do_convert_rgb: bool = True,
|
| 728 |
+
do_pad: Optional[bool] = True,
|
| 729 |
+
**kwargs,
|
| 730 |
+
) -> None:
|
| 731 |
+
super().__init__(**kwargs)
|
| 732 |
+
self.crop_mode = crop_mode
|
| 733 |
+
self.resize_mode = resize_mode
|
| 734 |
+
self.normalize_mode = normalize_mode
|
| 735 |
+
self.overlap_margins = overlap_margins
|
| 736 |
+
self.max_crops = max_crops
|
| 737 |
+
self.max_multi_image_crops = max_multi_image_crops
|
| 738 |
+
self.overlap_margins = overlap_margins
|
| 739 |
+
self.base_image_input_size = base_image_input_size
|
| 740 |
+
self.pad_value = pad_value
|
| 741 |
+
self.image_patch_size = image_patch_size
|
| 742 |
+
self.image_pooling_w = image_pooling_w
|
| 743 |
+
self.image_pooling_h = image_pooling_h
|
| 744 |
+
self.do_convert_rgb = do_convert_rgb
|
| 745 |
+
self.do_pad = do_pad
|
| 746 |
+
|
| 747 |
+
def to_channel_dimension_last(
|
| 748 |
+
self,
|
| 749 |
+
images: List[ImageInput],
|
| 750 |
+
) -> List[ImageInput]:
|
| 751 |
+
"""
|
| 752 |
+
Convert images to channel dimension last.
|
| 753 |
+
"""
|
| 754 |
+
new_images = []
|
| 755 |
+
for image in images:
|
| 756 |
+
if is_multi_image(image):
|
| 757 |
+
new_images.append([to_channel_dimension_format(img, ChannelDimension.LAST) for img in image])
|
| 758 |
+
else:
|
| 759 |
+
new_images.append(to_channel_dimension_format(image, ChannelDimension.LAST))
|
| 760 |
+
return new_images
|
| 761 |
+
|
| 762 |
+
def to_numpy_array(
|
| 763 |
+
self,
|
| 764 |
+
images: List[ImageInput],
|
| 765 |
+
) -> List[np.ndarray]:
|
| 766 |
+
"""
|
| 767 |
+
Convert images to numpy array.
|
| 768 |
+
"""
|
| 769 |
+
new_images = []
|
| 770 |
+
for image in images:
|
| 771 |
+
if is_multi_image(image):
|
| 772 |
+
new_images.append([to_numpy_array(img) for img in image])
|
| 773 |
+
else:
|
| 774 |
+
new_images.append(to_numpy_array(image))
|
| 775 |
+
return new_images
|
| 776 |
+
|
| 777 |
+
def to_rgb(
|
| 778 |
+
self,
|
| 779 |
+
images: List[ImageInput],
|
| 780 |
+
) -> List[ImageInput]:
|
| 781 |
+
"""
|
| 782 |
+
Convert images to RGB.
|
| 783 |
+
"""
|
| 784 |
+
new_images = []
|
| 785 |
+
for image in images:
|
| 786 |
+
if is_multi_image(image):
|
| 787 |
+
new_images.append([convert_to_rgb(img) for img in image])
|
| 788 |
+
else:
|
| 789 |
+
new_images.append(convert_to_rgb(image))
|
| 790 |
+
return new_images
|
| 791 |
+
|
| 792 |
+
def pad_arrays(self, arrays: List[np.ndarray], pad_value: float = -1) -> np.ndarray:
|
| 793 |
+
max_len = max(arr.shape[0] for arr in arrays)
|
| 794 |
+
padded_arr = np.full(
|
| 795 |
+
[len(arrays), max_len] + list(arrays[0].shape[1:]), pad_value, dtype=arrays[0].dtype
|
| 796 |
+
)
|
| 797 |
+
for ix, arr in enumerate(arrays):
|
| 798 |
+
padded_arr[ix, :len(arr)] = arr[:max_len]
|
| 799 |
+
return padded_arr
|
| 800 |
+
|
| 801 |
+
def pad_for_batching(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 802 |
+
"""
|
| 803 |
+
Pad the data for batching.
|
| 804 |
+
"""
|
| 805 |
+
images = self.pad_arrays(data["images"])
|
| 806 |
+
pooled_patches_idx = self.pad_arrays(data["pooled_patches_idx"])
|
| 807 |
+
image_masks = self.pad_arrays(data["image_masks"])
|
| 808 |
+
image_grids = self.pad_arrays(data["image_grids"])
|
| 809 |
+
new_data = dict(
|
| 810 |
+
images=images,
|
| 811 |
+
pooled_patches_idx=pooled_patches_idx,
|
| 812 |
+
image_masks=image_masks,
|
| 813 |
+
image_grids=image_grids,
|
| 814 |
+
)
|
| 815 |
+
return new_data
|
| 816 |
+
|
| 817 |
+
def preprocess(
|
| 818 |
+
self,
|
| 819 |
+
images: Union[ImageInput, List[ImageInput]],
|
| 820 |
+
crop_mode: Optional[str] = None,
|
| 821 |
+
resize_mode: Optional[str] = None,
|
| 822 |
+
normalize_mode: Optional[str] = None,
|
| 823 |
+
max_crops: Optional[int] = None,
|
| 824 |
+
max_multi_image_crops: Optional[int] = None,
|
| 825 |
+
overlap_margins: Optional[List[int]] = None,
|
| 826 |
+
base_image_input_size: Optional[List[int]] = None,
|
| 827 |
+
pad_value: Optional[float] = None,
|
| 828 |
+
image_patch_size: Optional[int] = None,
|
| 829 |
+
image_pooling_w: Optional[int] = None,
|
| 830 |
+
image_pooling_h: Optional[int] = None,
|
| 831 |
+
do_convert_rgb: Optional[bool] = None,
|
| 832 |
+
do_pad: Optional[bool] = None,
|
| 833 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 834 |
+
**kwargs,
|
| 835 |
+
) -> BatchFeature:
|
| 836 |
+
"""
|
| 837 |
+
Preprocess an image for the model.
|
| 838 |
+
Args:
|
| 839 |
+
image: The image to preprocess.
|
| 840 |
+
crop_mode: The crop mode to use. If None, use the default crop mode.
|
| 841 |
+
resize_mode: The resize mode to use. If None, use the default resize mode.
|
| 842 |
+
normalize_mode: The normalization mode to use. If None, use the default normalization mode.
|
| 843 |
+
max_crops: The maximum number of crops to use. If None, use the default value.
|
| 844 |
+
max_multi_image_crops: The maximum number of crops to use for multi-image inputs.
|
| 845 |
+
overlap_margins: The overlap margins to use. If None, use the default values.
|
| 846 |
+
base_image_input_size: The base image input size to use. If None, use the default size.
|
| 847 |
+
pad_value: The padding value to use. If None, use the default value.
|
| 848 |
+
image_patch_size: The size of the image patches. If None, use the default size.
|
| 849 |
+
image_pooling_h: The height of the image pooling. If None, use the default height.
|
| 850 |
+
image_pooling_w: The width of the image pooling. If None, use the default width.
|
| 851 |
+
do_convert_rgb: Whether to convert the image to RGB. If None, use the default value.
|
| 852 |
+
do_pad: Whether to pad image features. If None, use the default value.
|
| 853 |
+
|
| 854 |
+
Returns:
|
| 855 |
+
A tuple containing:
|
| 856 |
+
- The image grids
|
| 857 |
+
- The preprocessed images
|
| 858 |
+
- The padding masks
|
| 859 |
+
- The pooling indices
|
| 860 |
+
"""
|
| 861 |
+
images = make_batched_images(images)
|
| 862 |
+
|
| 863 |
+
if not valid_images(images):
|
| 864 |
+
raise ValueError("Invalid image input")
|
| 865 |
+
|
| 866 |
+
crop_mode = crop_mode or self.crop_mode
|
| 867 |
+
normalize_mode = normalize_mode or self.normalize_mode
|
| 868 |
+
resize_mode = resize_mode or self.resize_mode
|
| 869 |
+
max_crops = max_crops or self.max_crops
|
| 870 |
+
max_multi_image_crops = max_multi_image_crops or self.max_multi_image_crops
|
| 871 |
+
overlap_margins = overlap_margins or self.overlap_margins
|
| 872 |
+
base_image_input_size = base_image_input_size or self.base_image_input_size
|
| 873 |
+
pad_value = pad_value or self.pad_value
|
| 874 |
+
image_patch_size = image_patch_size or self.image_patch_size
|
| 875 |
+
image_pooling_w = image_pooling_w or self.image_pooling_w
|
| 876 |
+
image_pooling_h = image_pooling_h or self.image_pooling_h
|
| 877 |
+
do_convert_rgb = do_convert_rgb or self.do_convert_rgb
|
| 878 |
+
do_pad = do_pad or self.do_pad
|
| 879 |
+
|
| 880 |
+
if do_convert_rgb:
|
| 881 |
+
images = self.to_rgb(images)
|
| 882 |
+
|
| 883 |
+
# All transformations expect numpy arrays.
|
| 884 |
+
images = self.to_numpy_array(images)
|
| 885 |
+
|
| 886 |
+
# All transformations expect channel dimension last.
|
| 887 |
+
images = self.to_channel_dimension_last(images)
|
| 888 |
+
|
| 889 |
+
batch_image_grids = []
|
| 890 |
+
batch_crops = []
|
| 891 |
+
batch_crop_masks = []
|
| 892 |
+
batch_pooled_patches_idx = []
|
| 893 |
+
|
| 894 |
+
for image in images:
|
| 895 |
+
if is_multi_image(image):
|
| 896 |
+
all_image_grids = []
|
| 897 |
+
all_crops = []
|
| 898 |
+
all_crop_masks = []
|
| 899 |
+
pooled_patches_idx = []
|
| 900 |
+
for img in image:
|
| 901 |
+
image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids(
|
| 902 |
+
img,
|
| 903 |
+
crop_mode,
|
| 904 |
+
resize_mode,
|
| 905 |
+
normalize_mode,
|
| 906 |
+
max_multi_image_crops,
|
| 907 |
+
overlap_margins,
|
| 908 |
+
base_image_input_size,
|
| 909 |
+
pad_value,
|
| 910 |
+
image_patch_size,
|
| 911 |
+
image_pooling_w,
|
| 912 |
+
image_pooling_h,
|
| 913 |
+
)
|
| 914 |
+
pooled_patches_idx.append(pooled_idx + sum(np.prod(x.shape[:2]) for x in all_crops))
|
| 915 |
+
all_crops.append(crops)
|
| 916 |
+
all_crop_masks.append(img_mask)
|
| 917 |
+
all_image_grids.append(image_grid)
|
| 918 |
+
all_image_grids = np.concatenate(all_image_grids, 0)
|
| 919 |
+
all_crops = np.concatenate(all_crops, 0)
|
| 920 |
+
all_crop_masks = np.concatenate(all_crop_masks, 0)
|
| 921 |
+
pooled_patches_idx = np.concatenate(pooled_patches_idx, 0)
|
| 922 |
+
|
| 923 |
+
batch_image_grids.append(all_image_grids)
|
| 924 |
+
batch_crops.append(all_crops)
|
| 925 |
+
batch_crop_masks.append(all_crop_masks)
|
| 926 |
+
batch_pooled_patches_idx.append(pooled_patches_idx)
|
| 927 |
+
else:
|
| 928 |
+
image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids(
|
| 929 |
+
image,
|
| 930 |
+
crop_mode,
|
| 931 |
+
resize_mode,
|
| 932 |
+
normalize_mode,
|
| 933 |
+
max_crops,
|
| 934 |
+
overlap_margins,
|
| 935 |
+
base_image_input_size,
|
| 936 |
+
pad_value,
|
| 937 |
+
image_patch_size,
|
| 938 |
+
image_pooling_w,
|
| 939 |
+
image_pooling_h,
|
| 940 |
+
)
|
| 941 |
+
batch_image_grids.append(image_grid)
|
| 942 |
+
batch_crops.append(crops)
|
| 943 |
+
batch_crop_masks.append(img_mask)
|
| 944 |
+
batch_pooled_patches_idx.append(pooled_idx)
|
| 945 |
+
|
| 946 |
+
data =dict(
|
| 947 |
+
images=batch_crops,
|
| 948 |
+
pooled_patches_idx=batch_pooled_patches_idx,
|
| 949 |
+
image_masks=batch_crop_masks,
|
| 950 |
+
image_grids=batch_image_grids,
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
if do_pad:
|
| 954 |
+
data = self.pad_for_batching(data)
|
| 955 |
+
|
| 956 |
+
return BatchFeature(data, tensor_type=return_tensors)
|
| 957 |
+
|
| 958 |
+
|
| 959 |
+
MolmoActImageProcessor.register_for_auto_class()
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e5deca24338feeeeba5b871728acebb646352ce3b79b4ad079ceb921968f192
|
| 3 |
+
size 4878581216
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84feb4392641f7acd344c4d55667ffe2b84e3027f0acf2d83df38491931c5bc8
|
| 3 |
+
size 4932745864
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9dc6f3a8c503726409f1cf70010e9e896ce26849976cdb0fd331fd1a7ad1cd7
|
| 3 |
+
size 4994552920
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b55d0caf3e590efb714e21621febff3d7e197f934d99734542c305a9c827289a
|
| 3 |
+
size 1433042592
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16238835616
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.transformer.blocks.0.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.transformer.blocks.0.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.transformer.blocks.0.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.transformer.blocks.0.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.transformer.blocks.0.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.transformer.blocks.1.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.transformer.blocks.1.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.transformer.blocks.1.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.transformer.blocks.1.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.transformer.blocks.1.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 22 |
+
"model.transformer.blocks.10.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 23 |
+
"model.transformer.blocks.10.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 24 |
+
"model.transformer.blocks.10.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 25 |
+
"model.transformer.blocks.10.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 26 |
+
"model.transformer.blocks.10.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 27 |
+
"model.transformer.blocks.10.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"model.transformer.blocks.11.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"model.transformer.blocks.11.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"model.transformer.blocks.11.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"model.transformer.blocks.11.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.transformer.blocks.11.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.transformer.blocks.11.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.transformer.blocks.12.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.transformer.blocks.12.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.transformer.blocks.12.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.transformer.blocks.12.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.transformer.blocks.12.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.transformer.blocks.12.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.transformer.blocks.12.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.transformer.blocks.13.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.transformer.blocks.13.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.transformer.blocks.13.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.transformer.blocks.13.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.transformer.blocks.13.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.transformer.blocks.13.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.transformer.blocks.13.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.transformer.blocks.14.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.transformer.blocks.14.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.transformer.blocks.14.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.transformer.blocks.14.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.transformer.blocks.14.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.transformer.blocks.14.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.transformer.blocks.14.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.transformer.blocks.15.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.transformer.blocks.15.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.transformer.blocks.15.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.transformer.blocks.15.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.transformer.blocks.15.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.transformer.blocks.16.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.transformer.blocks.16.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.transformer.blocks.16.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.transformer.blocks.16.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.transformer.blocks.16.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.transformer.blocks.16.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.transformer.blocks.17.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.transformer.blocks.17.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.transformer.blocks.17.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.transformer.blocks.17.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.transformer.blocks.17.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.transformer.blocks.17.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.transformer.blocks.17.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.transformer.blocks.18.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.transformer.blocks.18.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 79 |
+
"model.transformer.blocks.18.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 80 |
+
"model.transformer.blocks.18.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.transformer.blocks.18.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.transformer.blocks.18.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.transformer.blocks.18.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.transformer.blocks.19.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 85 |
+
"model.transformer.blocks.19.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 86 |
+
"model.transformer.blocks.19.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 87 |
+
"model.transformer.blocks.19.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 88 |
+
"model.transformer.blocks.19.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 89 |
+
"model.transformer.blocks.19.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 90 |
+
"model.transformer.blocks.19.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 91 |
+
"model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 92 |
+
"model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 93 |
+
"model.transformer.blocks.2.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 94 |
+
"model.transformer.blocks.2.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 95 |
+
"model.transformer.blocks.2.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 96 |
+
"model.transformer.blocks.2.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 97 |
+
"model.transformer.blocks.2.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 98 |
+
"model.transformer.blocks.20.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 99 |
+
"model.transformer.blocks.20.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 100 |
+
"model.transformer.blocks.20.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 101 |
+
"model.transformer.blocks.20.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 102 |
+
"model.transformer.blocks.20.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 103 |
+
"model.transformer.blocks.20.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 104 |
+
"model.transformer.blocks.20.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 105 |
+
"model.transformer.blocks.21.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 106 |
+
"model.transformer.blocks.21.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 107 |
+
"model.transformer.blocks.21.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"model.transformer.blocks.21.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.transformer.blocks.21.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 110 |
+
"model.transformer.blocks.21.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 111 |
+
"model.transformer.blocks.21.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 113 |
+
"model.transformer.blocks.22.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 114 |
+
"model.transformer.blocks.22.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 115 |
+
"model.transformer.blocks.22.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 116 |
+
"model.transformer.blocks.22.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 117 |
+
"model.transformer.blocks.22.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 118 |
+
"model.transformer.blocks.22.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 119 |
+
"model.transformer.blocks.23.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 120 |
+
"model.transformer.blocks.23.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 121 |
+
"model.transformer.blocks.23.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 122 |
+
"model.transformer.blocks.23.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 123 |
+
"model.transformer.blocks.23.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 124 |
+
"model.transformer.blocks.23.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 125 |
+
"model.transformer.blocks.23.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"model.transformer.blocks.24.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"model.transformer.blocks.24.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.transformer.blocks.24.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.transformer.blocks.24.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.transformer.blocks.24.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.transformer.blocks.24.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.transformer.blocks.24.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.transformer.blocks.25.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.transformer.blocks.25.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.transformer.blocks.25.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.transformer.blocks.25.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.transformer.blocks.25.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.transformer.blocks.25.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.transformer.blocks.25.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.transformer.blocks.26.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.transformer.blocks.26.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.transformer.blocks.26.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.transformer.blocks.26.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.transformer.blocks.26.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.transformer.blocks.27.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.transformer.blocks.27.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.transformer.blocks.27.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.transformer.blocks.27.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.transformer.blocks.27.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.transformer.blocks.3.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.transformer.blocks.3.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.transformer.blocks.3.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.transformer.blocks.3.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.transformer.blocks.3.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.transformer.blocks.4.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.transformer.blocks.4.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 165 |
+
"model.transformer.blocks.4.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 166 |
+
"model.transformer.blocks.4.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 167 |
+
"model.transformer.blocks.4.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 168 |
+
"model.transformer.blocks.5.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 169 |
+
"model.transformer.blocks.5.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 170 |
+
"model.transformer.blocks.5.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 171 |
+
"model.transformer.blocks.5.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 172 |
+
"model.transformer.blocks.5.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 173 |
+
"model.transformer.blocks.5.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 174 |
+
"model.transformer.blocks.5.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 175 |
+
"model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 176 |
+
"model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 177 |
+
"model.transformer.blocks.6.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 178 |
+
"model.transformer.blocks.6.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 179 |
+
"model.transformer.blocks.6.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 180 |
+
"model.transformer.blocks.6.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 181 |
+
"model.transformer.blocks.6.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 182 |
+
"model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 183 |
+
"model.transformer.blocks.7.ff_norm.weight": "model-00001-of-00004.safetensors",
|
| 184 |
+
"model.transformer.blocks.7.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
| 185 |
+
"model.transformer.blocks.7.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
| 186 |
+
"model.transformer.blocks.7.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 187 |
+
"model.transformer.blocks.7.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 188 |
+
"model.transformer.blocks.7.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 189 |
+
"model.transformer.blocks.8.attn_norm.weight": "model-00001-of-00004.safetensors",
|
| 190 |
+
"model.transformer.blocks.8.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 191 |
+
"model.transformer.blocks.8.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 192 |
+
"model.transformer.blocks.8.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 193 |
+
"model.transformer.blocks.8.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
| 194 |
+
"model.transformer.blocks.8.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
| 195 |
+
"model.transformer.blocks.8.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
| 196 |
+
"model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00004.safetensors",
|
| 197 |
+
"model.transformer.blocks.9.ff_norm.weight": "model-00002-of-00004.safetensors",
|
| 198 |
+
"model.transformer.blocks.9.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
| 199 |
+
"model.transformer.blocks.9.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
| 200 |
+
"model.transformer.blocks.9.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
| 201 |
+
"model.transformer.blocks.9.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
| 202 |
+
"model.transformer.blocks.9.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
| 203 |
+
"model.transformer.ln_f.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.transformer.wte.embedding": "model-00001-of-00004.safetensors",
|
| 205 |
+
"model.transformer.wte.new_embedding": "model-00001-of-00004.safetensors",
|
| 206 |
+
"model.vision_backbone.image_pooling_2d.wk.bias": "model-00004-of-00004.safetensors",
|
| 207 |
+
"model.vision_backbone.image_pooling_2d.wk.weight": "model-00004-of-00004.safetensors",
|
| 208 |
+
"model.vision_backbone.image_pooling_2d.wo.bias": "model-00004-of-00004.safetensors",
|
| 209 |
+
"model.vision_backbone.image_pooling_2d.wo.weight": "model-00004-of-00004.safetensors",
|
| 210 |
+
"model.vision_backbone.image_pooling_2d.wq.bias": "model-00004-of-00004.safetensors",
|
| 211 |
+
"model.vision_backbone.image_pooling_2d.wq.weight": "model-00004-of-00004.safetensors",
|
| 212 |
+
"model.vision_backbone.image_pooling_2d.wv.bias": "model-00004-of-00004.safetensors",
|
| 213 |
+
"model.vision_backbone.image_pooling_2d.wv.weight": "model-00004-of-00004.safetensors",
|
| 214 |
+
"model.vision_backbone.image_projector.w1.weight": "model-00004-of-00004.safetensors",
|
| 215 |
+
"model.vision_backbone.image_projector.w2.weight": "model-00004-of-00004.safetensors",
|
| 216 |
+
"model.vision_backbone.image_projector.w3.weight": "model-00004-of-00004.safetensors",
|
| 217 |
+
"model.vision_backbone.image_vit.patch_embedding.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.vision_backbone.image_vit.patch_embedding.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.vision_backbone.image_vit.positional_embedding": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 261 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 262 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 263 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 264 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 265 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 266 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 267 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 268 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 269 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 270 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 271 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 272 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 273 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 274 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 275 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 276 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 277 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 278 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 279 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 280 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 281 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 282 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 283 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 284 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 285 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 286 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 287 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 288 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 289 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 290 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 291 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 292 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 293 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 294 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 295 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 296 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 297 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 298 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 299 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 300 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 301 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 302 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 303 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 304 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 305 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 306 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 307 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 308 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 309 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 310 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 311 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 312 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 313 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 314 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 315 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 316 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 317 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 318 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 319 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 320 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 321 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 322 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 323 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 324 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 325 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 326 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 327 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 328 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 329 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 330 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 331 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 332 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 333 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 334 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 335 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 336 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 337 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 338 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 339 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 340 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 341 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 342 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 343 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 344 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 345 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 346 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 347 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 348 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 349 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 350 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 351 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 352 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 353 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 354 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 355 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 356 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 357 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 358 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 359 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 360 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 361 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 362 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 363 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 364 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 365 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 366 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 367 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 368 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 369 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 370 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 371 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 372 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 373 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 374 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 375 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 376 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 377 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 378 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 379 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 380 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 381 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 382 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 383 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 384 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 385 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 386 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 387 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 388 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 389 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 390 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 391 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 392 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 393 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 394 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 395 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 396 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 397 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 398 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 399 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 400 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 401 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 402 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 403 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 404 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 405 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 406 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 407 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 408 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 409 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 410 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 411 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 412 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 413 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 414 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 415 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 416 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 417 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 418 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 419 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 420 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 421 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 422 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 423 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 424 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 425 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 426 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 427 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 428 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 429 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 430 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 431 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 432 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 433 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 434 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 435 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 436 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 437 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 438 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 439 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 440 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 441 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 442 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 443 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 444 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 445 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 446 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 447 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 448 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 449 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 450 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 451 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 452 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention_norm.bias": "model-00004-of-00004.safetensors",
|
| 453 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention_norm.weight": "model-00004-of-00004.safetensors",
|
| 454 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 455 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 456 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
| 457 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
| 458 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
| 459 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
| 460 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wk.bias": "model-00004-of-00004.safetensors",
|
| 461 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wk.weight": "model-00004-of-00004.safetensors",
|
| 462 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wo.bias": "model-00004-of-00004.safetensors",
|
| 463 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wo.weight": "model-00004-of-00004.safetensors",
|
| 464 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wq.bias": "model-00004-of-00004.safetensors",
|
| 465 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wq.weight": "model-00004-of-00004.safetensors",
|
| 466 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wv.bias": "model-00004-of-00004.safetensors",
|
| 467 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wv.weight": "model-00004-of-00004.safetensors",
|
| 468 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention_norm.bias": "model-00004-of-00004.safetensors",
|
| 469 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention_norm.weight": "model-00004-of-00004.safetensors",
|
| 470 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w1.bias": "model-00004-of-00004.safetensors",
|
| 471 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
|
| 472 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
| 473 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
| 474 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
| 475 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
| 476 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wk.bias": "model-00004-of-00004.safetensors",
|
| 477 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wk.weight": "model-00004-of-00004.safetensors",
|
| 478 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wo.bias": "model-00004-of-00004.safetensors",
|
| 479 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wo.weight": "model-00004-of-00004.safetensors",
|
| 480 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wq.bias": "model-00004-of-00004.safetensors",
|
| 481 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wq.weight": "model-00004-of-00004.safetensors",
|
| 482 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wv.bias": "model-00004-of-00004.safetensors",
|
| 483 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wv.weight": "model-00004-of-00004.safetensors",
|
| 484 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention_norm.bias": "model-00004-of-00004.safetensors",
|
| 485 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention_norm.weight": "model-00004-of-00004.safetensors",
|
| 486 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w1.bias": "model-00004-of-00004.safetensors",
|
| 487 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
|
| 488 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
| 489 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
| 490 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
| 491 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
| 492 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wk.bias": "model-00004-of-00004.safetensors",
|
| 493 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wk.weight": "model-00004-of-00004.safetensors",
|
| 494 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wo.bias": "model-00004-of-00004.safetensors",
|
| 495 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wo.weight": "model-00004-of-00004.safetensors",
|
| 496 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wq.bias": "model-00004-of-00004.safetensors",
|
| 497 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wq.weight": "model-00004-of-00004.safetensors",
|
| 498 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wv.bias": "model-00004-of-00004.safetensors",
|
| 499 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wv.weight": "model-00004-of-00004.safetensors",
|
| 500 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention_norm.bias": "model-00004-of-00004.safetensors",
|
| 501 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention_norm.weight": "model-00004-of-00004.safetensors",
|
| 502 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w1.bias": "model-00004-of-00004.safetensors",
|
| 503 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
|
| 504 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
| 505 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
| 506 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
| 507 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
| 508 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 509 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 510 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 511 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 512 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 513 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 514 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 515 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 516 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 517 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 518 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 519 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 520 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 521 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 522 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 523 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 524 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 525 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 526 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 527 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 528 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 529 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 530 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 531 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 532 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 533 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 534 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 535 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 536 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 537 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 538 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 539 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 540 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 541 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 542 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 543 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 544 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 545 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 546 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 547 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 548 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 549 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 550 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 551 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 552 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 553 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 554 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 555 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 556 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 557 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 558 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 559 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 560 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 561 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 562 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 563 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 564 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 565 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 566 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 567 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 568 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 569 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 570 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 571 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 572 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 573 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 574 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 575 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 576 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 577 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 578 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 579 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 580 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 581 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 582 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 583 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 584 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 585 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 586 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 587 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 588 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 589 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 590 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 591 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 592 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 593 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 594 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 595 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 596 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 597 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 598 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 599 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 600 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 601 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 602 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 603 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
| 604 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wk.bias": "model-00003-of-00004.safetensors",
|
| 605 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wk.weight": "model-00003-of-00004.safetensors",
|
| 606 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wo.bias": "model-00003-of-00004.safetensors",
|
| 607 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wo.weight": "model-00003-of-00004.safetensors",
|
| 608 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wq.bias": "model-00003-of-00004.safetensors",
|
| 609 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wq.weight": "model-00003-of-00004.safetensors",
|
| 610 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wv.bias": "model-00003-of-00004.safetensors",
|
| 611 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wv.weight": "model-00003-of-00004.safetensors",
|
| 612 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention_norm.bias": "model-00003-of-00004.safetensors",
|
| 613 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention_norm.weight": "model-00003-of-00004.safetensors",
|
| 614 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
| 615 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
| 616 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
| 617 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
| 618 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
| 619 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.ffn_norm.weight": "model-00003-of-00004.safetensors"
|
| 620 |
+
}
|
| 621 |
+
}
|
modeling_molmoact.py
ADDED
|
@@ -0,0 +1,2100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
|
| 10 |
+
from transformers.models.auto import AutoModelForCausalLM, AutoModelForImageTextToText
|
| 11 |
+
from transformers.activations import ACT2FN
|
| 12 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 13 |
+
from transformers.generation import GenerationMixin
|
| 14 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
| 15 |
+
from transformers.generation.utils import GenerateOutput
|
| 16 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 17 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 18 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward, FlashAttentionKwargs
|
| 19 |
+
from transformers import GradientCheckpointingLayer
|
| 20 |
+
from transformers.modeling_outputs import (
|
| 21 |
+
BaseModelOutput,
|
| 22 |
+
BaseModelOutputWithPast,
|
| 23 |
+
BaseModelOutputWithPooling,
|
| 24 |
+
CausalLMOutputWithPast,
|
| 25 |
+
)
|
| 26 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 27 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 28 |
+
from transformers.processing_utils import Unpack
|
| 29 |
+
from transformers.utils import (
|
| 30 |
+
ModelOutput,
|
| 31 |
+
can_return_tuple,
|
| 32 |
+
is_torch_flex_attn_available,
|
| 33 |
+
logging,
|
| 34 |
+
add_start_docstrings,
|
| 35 |
+
add_start_docstrings_to_model_forward,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
from .configuration_molmoact import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig
|
| 39 |
+
|
| 40 |
+
import re
|
| 41 |
+
import numpy as np
|
| 42 |
+
from transformers import Qwen2Tokenizer
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
if is_torch_flex_attn_available():
|
| 46 |
+
from torch.nn.attention.flex_attention import BlockMask
|
| 47 |
+
|
| 48 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
logger = logging.get_logger(__name__)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
MOLMO_START_DOCSTRING = r"""
|
| 55 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 56 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 57 |
+
etc.)
|
| 58 |
+
|
| 59 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 60 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 61 |
+
and behavior.
|
| 62 |
+
|
| 63 |
+
Parameters:
|
| 64 |
+
config ([`MolmoActConfig`]):
|
| 65 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 66 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 67 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
NUM_RE = re.compile(r'[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?$')
|
| 72 |
+
DEPTH_RE = re.compile(r'<DEPTH_START>(.*?)<DEPTH_END>', re.DOTALL)
|
| 73 |
+
# One-level-nested [...] matcher: outer block that may contain inner [ ... ] lists
|
| 74 |
+
OUTER_BLOCK_RE = re.compile(r'\[(?:[^\[\]]|\[[^\[\]]*\])+\]')
|
| 75 |
+
|
| 76 |
+
def _is_number(s: str) -> bool:
|
| 77 |
+
return bool(NUM_RE.match(s))
|
| 78 |
+
|
| 79 |
+
def _has_non_ascii(s: str) -> bool:
|
| 80 |
+
return any(ord(ch) > 127 for ch in s)
|
| 81 |
+
|
| 82 |
+
def _to_number(s: str):
|
| 83 |
+
"""Parse string number to int when possible, else float."""
|
| 84 |
+
v = float(s)
|
| 85 |
+
return int(v) if v.is_integer() else v
|
| 86 |
+
|
| 87 |
+
def extract_depth_string(text: str, include_tags: bool = False) -> list[str]:
|
| 88 |
+
"""
|
| 89 |
+
Return all occurrences of depth strings.
|
| 90 |
+
If include_tags=True, each item is '<DEPTH_START>...<DEPTH_END>';
|
| 91 |
+
otherwise each item is just the inner '...'.
|
| 92 |
+
"""
|
| 93 |
+
matches = list(DEPTH_RE.finditer(text))
|
| 94 |
+
if include_tags:
|
| 95 |
+
return [m.group(0) for m in matches]
|
| 96 |
+
return [m.group(1) for m in matches]
|
| 97 |
+
|
| 98 |
+
def extract_trace_lists(
|
| 99 |
+
text: str,
|
| 100 |
+
point_len: int | None = 2, # e.g., 2 for [x,y], 3 for [x,y,z]; None = any length ≥1
|
| 101 |
+
min_points: int = 1
|
| 102 |
+
) -> list[list[list[float]]]:
|
| 103 |
+
"""
|
| 104 |
+
Extract *numeric* lists-of-lists like [[140,225],[130,212],...].
|
| 105 |
+
Returns a list of traces; each trace is a list of points (lists of numbers).
|
| 106 |
+
|
| 107 |
+
Heuristic:
|
| 108 |
+
- Find outer [ ... ] blocks that may contain inner lists
|
| 109 |
+
- Keep blocks where every inner list is fully numeric
|
| 110 |
+
- Enforce per-point length (point_len) and a minimum number of points (min_points)
|
| 111 |
+
"""
|
| 112 |
+
traces: list[list[list[float]]] = []
|
| 113 |
+
|
| 114 |
+
# Find outer blocks that can contain nested lists
|
| 115 |
+
for block in OUTER_BLOCK_RE.findall(text):
|
| 116 |
+
inner_strs = re.findall(r'\[([^\[\]]+)\]', block) # contents of each inner [...]
|
| 117 |
+
if len(inner_strs) < min_points:
|
| 118 |
+
continue
|
| 119 |
+
|
| 120 |
+
rows: list[list[float]] = []
|
| 121 |
+
ok = True
|
| 122 |
+
for row in inner_strs:
|
| 123 |
+
parts = [p.strip().strip('"').strip("'") for p in row.split(',')]
|
| 124 |
+
if point_len is not None and len(parts) != point_len:
|
| 125 |
+
ok = False
|
| 126 |
+
break
|
| 127 |
+
if not all(_is_number(p) for p in parts):
|
| 128 |
+
ok = False
|
| 129 |
+
break
|
| 130 |
+
rows.append([_to_number(p) for p in parts])
|
| 131 |
+
|
| 132 |
+
if ok:
|
| 133 |
+
traces.append(rows)
|
| 134 |
+
|
| 135 |
+
return traces
|
| 136 |
+
|
| 137 |
+
def extract_action_token_lists(
|
| 138 |
+
text: str,
|
| 139 |
+
only_len: int | None = None, # e.g., 7 if you expect 7-D actions
|
| 140 |
+
require_non_ascii: bool = True # set False if your tokens can be pure ASCII
|
| 141 |
+
) -> list[list[str]]:
|
| 142 |
+
"""
|
| 143 |
+
Extract all [ ... ] groups split by commas, discard numeric lists,
|
| 144 |
+
and return token lists (quotes stripped, whitespace trimmed).
|
| 145 |
+
"""
|
| 146 |
+
lists = []
|
| 147 |
+
# Match NON-nested bracketed groups: [ ... ] without inner [ or ]
|
| 148 |
+
for inner in re.findall(r'\[([^\[\]]+)\]', text):
|
| 149 |
+
parts = [p.strip().strip('"').strip("'") for p in inner.split(',')]
|
| 150 |
+
|
| 151 |
+
if only_len is not None and len(parts) != only_len:
|
| 152 |
+
continue
|
| 153 |
+
|
| 154 |
+
# If *all* items are numeric -> not action tokens (like coordinates)
|
| 155 |
+
if all(_is_number(p) for p in parts):
|
| 156 |
+
continue
|
| 157 |
+
|
| 158 |
+
# Optionally require at least one non-ASCII char across tokens (helps exclude plain words/numbers)
|
| 159 |
+
if require_non_ascii and not any(_has_non_ascii(p) for p in parts):
|
| 160 |
+
continue
|
| 161 |
+
|
| 162 |
+
lists.append(parts)
|
| 163 |
+
|
| 164 |
+
return lists
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
@dataclass
|
| 168 |
+
class MolmoActCausalLMOutputWithPast(ModelOutput):
|
| 169 |
+
"""
|
| 170 |
+
Base class for MolmoAct causal language model (or autoregressive) outputs.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 174 |
+
Language modeling loss (for next-token prediction).
|
| 175 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 176 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 177 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 178 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 179 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 180 |
+
|
| 181 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 182 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 183 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 184 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 185 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 186 |
+
|
| 187 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 188 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 189 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 190 |
+
sequence_length)`.
|
| 191 |
+
|
| 192 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 193 |
+
heads.
|
| 194 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 195 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
| 196 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
loss: Optional[torch.FloatTensor] = None
|
| 200 |
+
logits: Optional[torch.FloatTensor] = None
|
| 201 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 202 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 203 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 204 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
@dataclass
|
| 208 |
+
class MolmoActModelOutputWithPast(BaseModelOutputWithPast):
|
| 209 |
+
"""
|
| 210 |
+
Base class for MolmoAct outputs, with hidden states and attentions.
|
| 211 |
+
|
| 212 |
+
Args:
|
| 213 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 214 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 215 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 216 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 217 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 218 |
+
|
| 219 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 220 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 221 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 222 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 223 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 224 |
+
|
| 225 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 226 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 227 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 228 |
+
sequence_length)`.
|
| 229 |
+
|
| 230 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 231 |
+
heads.
|
| 232 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 233 |
+
A `torch.FloatTensor` of size `(batch_num_patches, hidden_size)`.
|
| 234 |
+
image_hidden_states of the model produced by the vision backbone
|
| 235 |
+
"""
|
| 236 |
+
|
| 237 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 238 |
+
logits: Optional[torch.FloatTensor] = None
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
class MolmoActPreTrainedModel(PreTrainedModel):
|
| 242 |
+
config_class = MolmoActLlmConfig
|
| 243 |
+
base_model_prefix = "model"
|
| 244 |
+
supports_gradient_checkpointing = True
|
| 245 |
+
_no_split_modules = ["MolmoActDecoderLayer", "MolmoActPostNormDecoderLayer"]
|
| 246 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 247 |
+
_supports_flash_attn_2 = True
|
| 248 |
+
_supports_sdpa = True
|
| 249 |
+
_supports_flex_attn = False
|
| 250 |
+
_supports_cache_class = True
|
| 251 |
+
_supports_quantized_cache = True
|
| 252 |
+
_supports_static_cache = True
|
| 253 |
+
_supports_attention_backend = True
|
| 254 |
+
|
| 255 |
+
def _init_weights(self, module):
|
| 256 |
+
std = self.config.initializer_range
|
| 257 |
+
if isinstance(module, (nn.Linear,)):
|
| 258 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 259 |
+
if module.bias is not None:
|
| 260 |
+
module.bias.data.zero_()
|
| 261 |
+
elif isinstance(module, MolmoActEmbedding):
|
| 262 |
+
module.embedding.data.normal_(mean=0.0, std=std)
|
| 263 |
+
module.new_embedding.data.normal_(mean=0.0, std=std)
|
| 264 |
+
elif isinstance(module, nn.Embedding):
|
| 265 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 266 |
+
if module.padding_idx is not None:
|
| 267 |
+
module.weight.data[module.padding_idx].zero_()
|
| 268 |
+
elif isinstance(module, MolmoActRMSNorm):
|
| 269 |
+
module.weight.data.fill_(1.0)
|
| 270 |
+
elif isinstance(module, nn.LayerNorm):
|
| 271 |
+
module.weight.data.fill_(1.0)
|
| 272 |
+
if module.bias is not None:
|
| 273 |
+
module.bias.data.zero_()
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class ViTMLP(nn.Module):
|
| 277 |
+
def __init__(self, dim: int, hidden_dim: int, hidden_act: str, device: Union[str, torch.device] = None):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=True, device=device)
|
| 280 |
+
self.act = ACT2FN[hidden_act]
|
| 281 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=True, device=device)
|
| 282 |
+
|
| 283 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 284 |
+
return self.w2(self.act(self.w1(x)))
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
class ViTMultiHeadDotProductAttention(nn.Module):
|
| 288 |
+
def __init__(
|
| 289 |
+
self,
|
| 290 |
+
hidden_size: int,
|
| 291 |
+
num_heads: int,
|
| 292 |
+
num_key_value_heads: int,
|
| 293 |
+
head_dim: int,
|
| 294 |
+
use_bias: bool = True,
|
| 295 |
+
input_dim: Optional[int] = None,
|
| 296 |
+
float32_attention: bool = True,
|
| 297 |
+
attention_dropout: float = 0.0,
|
| 298 |
+
residual_dropout: float = 0.0,
|
| 299 |
+
device: Union[str, torch.device] = None,
|
| 300 |
+
attn_implementation: str = "eager",
|
| 301 |
+
):
|
| 302 |
+
super().__init__()
|
| 303 |
+
|
| 304 |
+
self.hidden_size = hidden_size
|
| 305 |
+
self.num_heads = num_heads
|
| 306 |
+
self.head_dim = head_dim
|
| 307 |
+
self.num_key_value_heads = num_key_value_heads
|
| 308 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 309 |
+
self.attn_implementation = attn_implementation
|
| 310 |
+
self.is_causal = False
|
| 311 |
+
|
| 312 |
+
input_dim = input_dim or hidden_size
|
| 313 |
+
|
| 314 |
+
self.wq = nn.Linear(
|
| 315 |
+
input_dim,
|
| 316 |
+
self.num_heads * self.head_dim,
|
| 317 |
+
bias=use_bias,
|
| 318 |
+
device=device,
|
| 319 |
+
)
|
| 320 |
+
self.wk = nn.Linear(
|
| 321 |
+
input_dim,
|
| 322 |
+
self.num_key_value_heads * self.head_dim,
|
| 323 |
+
bias=use_bias,
|
| 324 |
+
device=device,
|
| 325 |
+
)
|
| 326 |
+
self.wv = nn.Linear(
|
| 327 |
+
input_dim,
|
| 328 |
+
self.num_key_value_heads * self.head_dim,
|
| 329 |
+
bias=use_bias,
|
| 330 |
+
device=device,
|
| 331 |
+
)
|
| 332 |
+
self.wo = nn.Linear(
|
| 333 |
+
self.num_heads * self.head_dim,
|
| 334 |
+
self.hidden_size,
|
| 335 |
+
)
|
| 336 |
+
self.float32_attention = float32_attention
|
| 337 |
+
self.attention_dropout = attention_dropout
|
| 338 |
+
self.residual_dropout = nn.Dropout(residual_dropout)
|
| 339 |
+
|
| 340 |
+
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
|
| 341 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
| 342 |
+
|
| 343 |
+
def _merge_heads(self, hidden_states) -> torch.Tensor:
|
| 344 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
|
| 345 |
+
|
| 346 |
+
def forward(
|
| 347 |
+
self,
|
| 348 |
+
inputs_q: torch.Tensor,
|
| 349 |
+
inputs_kv: Optional[torch.Tensor] = None,
|
| 350 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 351 |
+
) -> torch.Tensor:
|
| 352 |
+
|
| 353 |
+
if inputs_kv is not None:
|
| 354 |
+
inputs_k = inputs_kv
|
| 355 |
+
inputs_v = inputs_kv
|
| 356 |
+
else:
|
| 357 |
+
inputs_k = inputs_q
|
| 358 |
+
inputs_v = inputs_q
|
| 359 |
+
|
| 360 |
+
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
|
| 361 |
+
|
| 362 |
+
xq = self._split_heads(xq, self.num_heads)
|
| 363 |
+
xk = self._split_heads(xk, self.num_key_value_heads)
|
| 364 |
+
xv = self._split_heads(xv, self.num_key_value_heads)
|
| 365 |
+
|
| 366 |
+
if self.num_heads != self.num_key_value_heads:
|
| 367 |
+
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
| 368 |
+
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
| 369 |
+
|
| 370 |
+
og_dtype = xq.dtype
|
| 371 |
+
|
| 372 |
+
if self.float32_attention:
|
| 373 |
+
xq = xq.to(torch.float)
|
| 374 |
+
xk = xk.to(torch.float)
|
| 375 |
+
|
| 376 |
+
dropout_p = 0.0 if not self.training else self.attention_dropout
|
| 377 |
+
|
| 378 |
+
if self.attn_implementation == "eager":
|
| 379 |
+
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
|
| 380 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 381 |
+
attn_weights = F.dropout(
|
| 382 |
+
attn_weights,
|
| 383 |
+
p=dropout_p,
|
| 384 |
+
training=self.training
|
| 385 |
+
)
|
| 386 |
+
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
|
| 387 |
+
|
| 388 |
+
elif self.attn_implementation == "sdpa":
|
| 389 |
+
if not torch.is_autocast_enabled():
|
| 390 |
+
xv = xv.to(torch.float)
|
| 391 |
+
|
| 392 |
+
attn_output = F.scaled_dot_product_attention(
|
| 393 |
+
xq.transpose(1, 2).contiguous(),
|
| 394 |
+
xk.transpose(1, 2).contiguous(),
|
| 395 |
+
xv.transpose(1, 2).contiguous(),
|
| 396 |
+
attn_mask=attn_mask,
|
| 397 |
+
is_causal=False,
|
| 398 |
+
dropout_p=dropout_p,
|
| 399 |
+
).transpose(1, 2)
|
| 400 |
+
|
| 401 |
+
elif self.attn_implementation == "flash_attention_2":
|
| 402 |
+
assert not self.config.float32_attention
|
| 403 |
+
# Downcast in case we are running with fp32 hidden states
|
| 404 |
+
attn_output = _flash_attention_forward(
|
| 405 |
+
xq.transpose(1, 2).to(torch.bfloat16),
|
| 406 |
+
xk.transpose(1, 2).to(torch.bfloat16),
|
| 407 |
+
xv.transpose(1, 2).to(torch.bfloat16),
|
| 408 |
+
attention_mask=None,
|
| 409 |
+
query_length=inputs_q.shape[1],
|
| 410 |
+
is_causal=False,
|
| 411 |
+
dropout=dropout_p,
|
| 412 |
+
)
|
| 413 |
+
else:
|
| 414 |
+
raise ValueError(f"Attention implementation {self.attn_implementation} not supported")
|
| 415 |
+
|
| 416 |
+
attn_output = attn_output.to(og_dtype)
|
| 417 |
+
attn_output = self._merge_heads(attn_output)
|
| 418 |
+
attn_output = self.wo(attn_output)
|
| 419 |
+
attn_output = self.residual_dropout(attn_output)
|
| 420 |
+
|
| 421 |
+
return attn_output
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
class MolmoActVisionBlock(nn.Module):
|
| 425 |
+
|
| 426 |
+
def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None):
|
| 427 |
+
super().__init__()
|
| 428 |
+
self.attention = ViTMultiHeadDotProductAttention(
|
| 429 |
+
hidden_size=config.hidden_size,
|
| 430 |
+
num_heads=config.num_attention_heads,
|
| 431 |
+
num_key_value_heads=config.num_key_value_heads,
|
| 432 |
+
head_dim=config.head_dim,
|
| 433 |
+
float32_attention=config.float32_attention,
|
| 434 |
+
attention_dropout=config.attention_dropout,
|
| 435 |
+
residual_dropout=config.residual_dropout,
|
| 436 |
+
device=device,
|
| 437 |
+
attn_implementation=config._attn_implementation,
|
| 438 |
+
)
|
| 439 |
+
self.feed_forward = ViTMLP(config.hidden_size, config.intermediate_size, config.hidden_act, device=device)
|
| 440 |
+
self.attention_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device)
|
| 441 |
+
self.ffn_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device)
|
| 442 |
+
|
| 443 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 444 |
+
x = x + self.attention(self.attention_norm(x))
|
| 445 |
+
x = x + self.feed_forward(self.ffn_norm(x))
|
| 446 |
+
return x
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
class MolmoActVisionBlockCollection(nn.Module):
|
| 450 |
+
|
| 451 |
+
def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None):
|
| 452 |
+
super().__init__()
|
| 453 |
+
self.conifg = config
|
| 454 |
+
self.resblocks = nn.ModuleList([
|
| 455 |
+
MolmoActVisionBlock(config, device) for _ in range(config.num_hidden_layers)
|
| 456 |
+
])
|
| 457 |
+
|
| 458 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
| 459 |
+
hidden_states = []
|
| 460 |
+
for r in self.resblocks:
|
| 461 |
+
x = r(x)
|
| 462 |
+
hidden_states.append(x)
|
| 463 |
+
return hidden_states
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
def _expand_token(token, batch_size: int):
|
| 467 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
class MolmoActVisionTransformer(nn.Module):
|
| 471 |
+
|
| 472 |
+
def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None):
|
| 473 |
+
super().__init__()
|
| 474 |
+
self.config = config
|
| 475 |
+
|
| 476 |
+
self.scale = config.hidden_size ** -0.5
|
| 477 |
+
|
| 478 |
+
# optional CLS
|
| 479 |
+
self.num_prefix_tokens: int = 1 if config.use_cls_token else 0
|
| 480 |
+
if config.use_cls_token:
|
| 481 |
+
self.class_embedding = nn.Parameter(
|
| 482 |
+
torch.zeros(config.hidden_size, device=device)
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
# positional embeddings
|
| 486 |
+
self.positional_embedding = nn.Parameter(
|
| 487 |
+
torch.zeros(config.image_num_pos, config.hidden_size, device=device),
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
image_patch_size = config.image_patch_size
|
| 491 |
+
self.patch_embedding = nn.Linear(
|
| 492 |
+
image_patch_size * image_patch_size * 3,
|
| 493 |
+
config.hidden_size,
|
| 494 |
+
bias=config.patch_bias,
|
| 495 |
+
device=device,
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
# optional pre-LN
|
| 499 |
+
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) \
|
| 500 |
+
if config.pre_layernorm else None
|
| 501 |
+
|
| 502 |
+
self.transformer = MolmoActVisionBlockCollection(config, device)
|
| 503 |
+
|
| 504 |
+
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
|
| 505 |
+
pos_emb = self.positional_embedding
|
| 506 |
+
if self.config.use_cls_token:
|
| 507 |
+
cls_pos, pos_emb = pos_emb[:1], pos_emb[1:] # split out CLS
|
| 508 |
+
|
| 509 |
+
pos_emb = pos_emb.reshape(
|
| 510 |
+
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
(patch_num_0, patch_num_1) = patch_num
|
| 514 |
+
|
| 515 |
+
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
|
| 516 |
+
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
| 517 |
+
# antialias: default True in jax.image.resize
|
| 518 |
+
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
|
| 519 |
+
pos_emb = F.interpolate(
|
| 520 |
+
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
|
| 521 |
+
)
|
| 522 |
+
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
|
| 523 |
+
|
| 524 |
+
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
|
| 525 |
+
|
| 526 |
+
if self.config.use_cls_token:
|
| 527 |
+
x = x + torch.cat([cls_pos[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
|
| 528 |
+
else:
|
| 529 |
+
x = x + pos_emb[None, :, :].to(x.dtype)
|
| 530 |
+
|
| 531 |
+
return x
|
| 532 |
+
|
| 533 |
+
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
|
| 534 |
+
"""
|
| 535 |
+
: param x: (batch_size, num_patch, n_pixels)
|
| 536 |
+
"""
|
| 537 |
+
if patch_num is None:
|
| 538 |
+
patch_num = self.config.image_num_patch
|
| 539 |
+
|
| 540 |
+
B, N, D = x.shape
|
| 541 |
+
|
| 542 |
+
x = self.patch_embedding(x)
|
| 543 |
+
|
| 544 |
+
if self.config.use_cls_token:
|
| 545 |
+
x = torch.cat([_expand_token(self.class_embedding, x.size(0)).to(x.dtype), x], dim=1)
|
| 546 |
+
|
| 547 |
+
# class embeddings and positional embeddings
|
| 548 |
+
x = self.add_pos_emb(x, patch_num)
|
| 549 |
+
|
| 550 |
+
if self.pre_ln is not None:
|
| 551 |
+
x = self.pre_ln(x)
|
| 552 |
+
|
| 553 |
+
hidden_states = self.transformer(x)
|
| 554 |
+
return hidden_states
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class ImageProjectorMLP(nn.Module):
|
| 558 |
+
|
| 559 |
+
def __init__(
|
| 560 |
+
self,
|
| 561 |
+
input_dim: int,
|
| 562 |
+
hidden_dim: int,
|
| 563 |
+
output_dim: int,
|
| 564 |
+
hidden_act: str,
|
| 565 |
+
device: Union[str, torch.device] = None,
|
| 566 |
+
):
|
| 567 |
+
super().__init__()
|
| 568 |
+
self.w1 = nn.Linear(input_dim, hidden_dim, bias=False, device=device)
|
| 569 |
+
self.w2 = nn.Linear(hidden_dim, output_dim, bias=False, device=device)
|
| 570 |
+
self.w3 = nn.Linear(input_dim, hidden_dim, bias=False, device=device)
|
| 571 |
+
self.act = ACT2FN[hidden_act]
|
| 572 |
+
|
| 573 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 574 |
+
return self.w2(self.act(self.w1(x)) * self.w3(x))
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
class MolmoActVisionBackbone(nn.Module):
|
| 578 |
+
def __init__(self, vit_config: MolmoActVitConfig, adapter_config: MolmoActAdapterConfig):
|
| 579 |
+
super().__init__()
|
| 580 |
+
self.vit_config = vit_config
|
| 581 |
+
self.adapter_config = adapter_config
|
| 582 |
+
|
| 583 |
+
self.vit_layers = []
|
| 584 |
+
for layer in adapter_config.vit_layers:
|
| 585 |
+
if layer >= 0:
|
| 586 |
+
self.vit_layers.append(layer)
|
| 587 |
+
else:
|
| 588 |
+
self.vit_layers.append(layer + vit_config.num_hidden_layers)
|
| 589 |
+
|
| 590 |
+
last_layer_needed = max(self.vit_layers) + 1
|
| 591 |
+
if last_layer_needed < vit_config.num_hidden_layers:
|
| 592 |
+
new_vit_config = deepcopy(vit_config)
|
| 593 |
+
new_vit_config.num_hidden_layers = last_layer_needed
|
| 594 |
+
self.image_vit = MolmoActVisionTransformer(new_vit_config)
|
| 595 |
+
else:
|
| 596 |
+
self.image_vit = MolmoActVisionTransformer(vit_config)
|
| 597 |
+
|
| 598 |
+
self.num_prefix_tokens: int = self.image_vit.num_prefix_tokens
|
| 599 |
+
|
| 600 |
+
# optional pad_embed
|
| 601 |
+
self.pad_embed = None
|
| 602 |
+
if adapter_config.image_padding_embed == "pad_and_partial_pad":
|
| 603 |
+
pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers)
|
| 604 |
+
self.pad_embed = nn.Parameter(torch.zeros((2, pool_dim)))
|
| 605 |
+
|
| 606 |
+
pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers)
|
| 607 |
+
self.image_pooling_2d = ViTMultiHeadDotProductAttention(
|
| 608 |
+
hidden_size=adapter_config.hidden_size,
|
| 609 |
+
num_heads=adapter_config.num_attention_heads,
|
| 610 |
+
num_key_value_heads=adapter_config.num_key_value_heads,
|
| 611 |
+
head_dim=adapter_config.head_dim,
|
| 612 |
+
input_dim=pool_dim,
|
| 613 |
+
float32_attention=adapter_config.float32_attention,
|
| 614 |
+
attention_dropout=adapter_config.attention_dropout,
|
| 615 |
+
residual_dropout=adapter_config.residual_dropout,
|
| 616 |
+
attn_implementation=adapter_config._attn_implementation,
|
| 617 |
+
)
|
| 618 |
+
self.image_projector = ImageProjectorMLP(
|
| 619 |
+
adapter_config.hidden_size,
|
| 620 |
+
adapter_config.intermediate_size,
|
| 621 |
+
adapter_config.text_hidden_size,
|
| 622 |
+
adapter_config.hidden_act,
|
| 623 |
+
)
|
| 624 |
+
self.image_feature_dropout = nn.Dropout(adapter_config.image_feature_dropout)
|
| 625 |
+
|
| 626 |
+
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
|
| 627 |
+
"""
|
| 628 |
+
: param images: (batch_size, num_crops, num_patch, n_pixels)
|
| 629 |
+
"""
|
| 630 |
+
B, T, N, D = images.shape
|
| 631 |
+
images = images.view(B * T, N, D)
|
| 632 |
+
image_features = self.image_vit(images)
|
| 633 |
+
|
| 634 |
+
features = []
|
| 635 |
+
for layer in self.vit_layers:
|
| 636 |
+
features.append(image_features[layer])
|
| 637 |
+
image_features = torch.cat(features, dim=-1)
|
| 638 |
+
|
| 639 |
+
if self.num_prefix_tokens > 0:
|
| 640 |
+
image_features = image_features[:, 1:]
|
| 641 |
+
image_features = image_features.view(B, T, N, -1)
|
| 642 |
+
return image_features
|
| 643 |
+
|
| 644 |
+
@property
|
| 645 |
+
def dtype(self) -> torch.dtype:
|
| 646 |
+
return self.image_vit.patch_embedding.weight.dtype
|
| 647 |
+
|
| 648 |
+
@property
|
| 649 |
+
def device(self) -> torch.device:
|
| 650 |
+
return self.image_vit.patch_embedding.weight.device
|
| 651 |
+
|
| 652 |
+
def forward(
|
| 653 |
+
self,
|
| 654 |
+
images: torch.Tensor,
|
| 655 |
+
pooled_patches_idx: torch.Tensor,
|
| 656 |
+
image_masks: torch.Tensor = None,
|
| 657 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 658 |
+
|
| 659 |
+
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
| 660 |
+
batch_size, num_image = images.shape[:2]
|
| 661 |
+
images = images.to(device=self.device, dtype=self.dtype)
|
| 662 |
+
image_features = self.encode_image(images)
|
| 663 |
+
|
| 664 |
+
# optional padding embeddings
|
| 665 |
+
if self.pad_embed is not None and image_masks is not None:
|
| 666 |
+
image_masks = image_masks.to(device=self.device)
|
| 667 |
+
all_pad = (image_masks == 0).to(image_features.dtype)
|
| 668 |
+
partial = torch.logical_and(image_masks < 1, ~ (image_masks == 0)).to(image_features.dtype)
|
| 669 |
+
image_features = image_features + self.pad_embed[0][None,None,None,:] * all_pad[...,None] \
|
| 670 |
+
+ self.pad_embed[1][None,None,None,:] * partial[...,None]
|
| 671 |
+
|
| 672 |
+
image_features = self.image_feature_dropout(image_features)
|
| 673 |
+
dim = image_features.shape[-1]
|
| 674 |
+
|
| 675 |
+
valid = pooled_patches_idx >= 0
|
| 676 |
+
valid_token = torch.any(valid, -1)
|
| 677 |
+
|
| 678 |
+
# Use `pooled_patches_idx` to arange the features for image pooling
|
| 679 |
+
batch_idx = torch.arange(pooled_patches_idx.shape[0], dtype=torch.long, device=pooled_patches_idx.device)
|
| 680 |
+
batch_idx = torch.tile(batch_idx.view(batch_size, 1, 1), [1, pooled_patches_idx.shape[1], pooled_patches_idx.shape[2]])
|
| 681 |
+
|
| 682 |
+
# Now [batch, num_high_res_features, pool_dim, dim]
|
| 683 |
+
to_pool = image_features.reshape(batch_size, -1, dim)[batch_idx, torch.clip(pooled_patches_idx, 0)]
|
| 684 |
+
to_pool = to_pool * valid.to(self.dtype)[:, :, :, None]
|
| 685 |
+
to_pool = to_pool.reshape([-1, pooled_patches_idx.shape[-1], dim])
|
| 686 |
+
|
| 687 |
+
query = to_pool.mean(-2, keepdim=True)
|
| 688 |
+
pooled_features = self.image_pooling_2d(query, to_pool)
|
| 689 |
+
pooled_features = pooled_features.reshape([batch_size, -1, pooled_features.shape[-1]])
|
| 690 |
+
|
| 691 |
+
# MLP layer to map the feature.
|
| 692 |
+
pooled_features = self.image_projector(pooled_features)
|
| 693 |
+
return pooled_features.view(-1, pooled_features.shape[-1])[valid_token.flatten()]
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 697 |
+
def rotate_half(x):
|
| 698 |
+
"""Rotates half the hidden dims of the input."""
|
| 699 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 700 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 701 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 705 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 706 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 707 |
+
|
| 708 |
+
Args:
|
| 709 |
+
q (`torch.Tensor`): The query tensor.
|
| 710 |
+
k (`torch.Tensor`): The key tensor.
|
| 711 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 712 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 713 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 714 |
+
Deprecated and unused.
|
| 715 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 716 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 717 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 718 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 719 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 720 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 721 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 722 |
+
Returns:
|
| 723 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 724 |
+
"""
|
| 725 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 726 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 727 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 728 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 729 |
+
return q_embed, k_embed
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding
|
| 733 |
+
class MolmoActRotaryEmbedding(nn.Module):
|
| 734 |
+
|
| 735 |
+
def __init__(self, config: MolmoActLlmConfig, device: Union[str, torch.device] = None):
|
| 736 |
+
super().__init__()
|
| 737 |
+
# BC: "rope_type" was originally "type"
|
| 738 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 739 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 740 |
+
else:
|
| 741 |
+
self.rope_type = "default"
|
| 742 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 743 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 744 |
+
|
| 745 |
+
self.config = config
|
| 746 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 747 |
+
|
| 748 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 749 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 750 |
+
self.original_inv_freq = self.inv_freq
|
| 751 |
+
|
| 752 |
+
@torch.no_grad()
|
| 753 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 754 |
+
def forward(self, x, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 755 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 756 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 757 |
+
|
| 758 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 759 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 760 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 761 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 762 |
+
cos = emb.cos() * self.attention_scaling
|
| 763 |
+
sin = emb.sin() * self.attention_scaling
|
| 764 |
+
|
| 765 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 769 |
+
class MolmoActRMSNorm(nn.Module):
|
| 770 |
+
|
| 771 |
+
def __init__(
|
| 772 |
+
self,
|
| 773 |
+
size: int,
|
| 774 |
+
eps: float = 1e-6,
|
| 775 |
+
device: Union[str, torch.device] = None,
|
| 776 |
+
):
|
| 777 |
+
super().__init__()
|
| 778 |
+
self.weight = nn.Parameter(torch.ones(size, device=device))
|
| 779 |
+
self.eps = eps
|
| 780 |
+
|
| 781 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 782 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
| 783 |
+
og_dtype = x.dtype
|
| 784 |
+
x = x.to(torch.float32)
|
| 785 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 786 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 787 |
+
x = x.to(og_dtype)
|
| 788 |
+
|
| 789 |
+
return self.weight * x
|
| 790 |
+
|
| 791 |
+
def extra_repr(self):
|
| 792 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 796 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 797 |
+
"""
|
| 798 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 799 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 800 |
+
"""
|
| 801 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 802 |
+
if n_rep == 1:
|
| 803 |
+
return hidden_states
|
| 804 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 805 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
def eager_attention_forward(
|
| 809 |
+
module: nn.Module,
|
| 810 |
+
query: torch.Tensor,
|
| 811 |
+
key: torch.Tensor,
|
| 812 |
+
value: torch.Tensor,
|
| 813 |
+
attention_mask: Optional[torch.Tensor],
|
| 814 |
+
scaling: float,
|
| 815 |
+
dropout: float = 0.0,
|
| 816 |
+
**kwargs,
|
| 817 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 818 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 819 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 820 |
+
|
| 821 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 822 |
+
if attention_mask is not None:
|
| 823 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 824 |
+
attn_weights = attn_weights + causal_mask
|
| 825 |
+
|
| 826 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 827 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 828 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 829 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 830 |
+
|
| 831 |
+
return attn_output, attn_weights
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
class MolmoActAttention(nn.Module):
|
| 835 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 836 |
+
|
| 837 |
+
# copied from transformers.models.llama.modeling_llama.LlamaAttention.__init__ with Llama->MolmoAct
|
| 838 |
+
def __init__(self, config: MolmoActLlmConfig, layer_idx: Optional[int] = None) -> None:
|
| 839 |
+
super().__init__()
|
| 840 |
+
self.config = config
|
| 841 |
+
self.layer_idx = layer_idx
|
| 842 |
+
if layer_idx is None:
|
| 843 |
+
logger.warning_once(
|
| 844 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 845 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 846 |
+
"when creating this class."
|
| 847 |
+
)
|
| 848 |
+
|
| 849 |
+
self.num_heads = config.num_attention_heads
|
| 850 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 851 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 852 |
+
self.head_dim = config.head_dim
|
| 853 |
+
self.scaling = self.head_dim**-0.5
|
| 854 |
+
self.is_causal = True
|
| 855 |
+
|
| 856 |
+
if (config.head_dim * config.num_attention_heads) != config.hidden_size:
|
| 857 |
+
raise ValueError(
|
| 858 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {config.hidden_size}"
|
| 859 |
+
f" and `num_attention_heads`: {config.num_attention_heads})."
|
| 860 |
+
)
|
| 861 |
+
|
| 862 |
+
self.fused_dims = (
|
| 863 |
+
config.hidden_size,
|
| 864 |
+
config.head_dim * config.num_key_value_heads,
|
| 865 |
+
config.head_dim * config.num_key_value_heads,
|
| 866 |
+
)
|
| 867 |
+
self.att_proj = nn.Linear(
|
| 868 |
+
config.hidden_size,
|
| 869 |
+
sum(self.fused_dims),
|
| 870 |
+
bias=config.qkv_bias,
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
# Layer norms.
|
| 874 |
+
self.k_norm: Optional[MolmoActRMSNorm] = None
|
| 875 |
+
self.q_norm: Optional[MolmoActRMSNorm] = None
|
| 876 |
+
self.qk_norm_type: Optional[str] = None
|
| 877 |
+
if config.use_qk_norm:
|
| 878 |
+
k_norm_size = (
|
| 879 |
+
config.head_dim
|
| 880 |
+
if config.qk_norm_type == "qwen3" else
|
| 881 |
+
config.num_key_value_heads * config.head_dim
|
| 882 |
+
)
|
| 883 |
+
self.k_norm = MolmoActRMSNorm(k_norm_size, eps=config.layer_norm_eps)
|
| 884 |
+
q_norm_size = (
|
| 885 |
+
config.head_dim
|
| 886 |
+
if config.qk_norm_type == "qwen3" else
|
| 887 |
+
config.num_attention_heads * config.head_dim
|
| 888 |
+
)
|
| 889 |
+
self.q_norm = MolmoActRMSNorm(q_norm_size, eps=config.layer_norm_eps)
|
| 890 |
+
self.qk_norm_type = config.qk_norm_type
|
| 891 |
+
|
| 892 |
+
self.attention_dropout = config.attention_dropout
|
| 893 |
+
|
| 894 |
+
self.attn_out = nn.Linear(
|
| 895 |
+
config.hidden_size,
|
| 896 |
+
config.hidden_size,
|
| 897 |
+
bias=False,
|
| 898 |
+
)
|
| 899 |
+
|
| 900 |
+
def forward(
|
| 901 |
+
self,
|
| 902 |
+
hidden_states: torch.Tensor,
|
| 903 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 904 |
+
attention_mask: Optional[torch.Tensor],
|
| 905 |
+
past_key_value: Optional[Cache] = None,
|
| 906 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 907 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 908 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 909 |
+
input_shape = hidden_states.shape[:-1]
|
| 910 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 911 |
+
|
| 912 |
+
qkv = self.att_proj(hidden_states)
|
| 913 |
+
query_states, key_states, value_states = qkv.split(self.fused_dims, dim=-1)
|
| 914 |
+
value_states = value_states.view(hidden_shape)
|
| 915 |
+
|
| 916 |
+
# Optionally apply layer norm to keys and queries.
|
| 917 |
+
if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type != "qwen3":
|
| 918 |
+
query_states = self.q_norm(query_states)
|
| 919 |
+
key_states = self.k_norm(key_states)
|
| 920 |
+
|
| 921 |
+
query_states = query_states.view(hidden_shape)
|
| 922 |
+
key_states = key_states.view(hidden_shape)
|
| 923 |
+
if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type == "qwen3":
|
| 924 |
+
query_states = self.q_norm(query_states)
|
| 925 |
+
key_states = self.k_norm(key_states)
|
| 926 |
+
query_states = query_states.transpose(1, 2)
|
| 927 |
+
key_states = key_states.transpose(1, 2)
|
| 928 |
+
value_states = value_states.transpose(1, 2)
|
| 929 |
+
|
| 930 |
+
cos, sin = position_embeddings
|
| 931 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 932 |
+
|
| 933 |
+
if past_key_value is not None:
|
| 934 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 935 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 936 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 937 |
+
|
| 938 |
+
attention_interface: Callable = eager_attention_forward
|
| 939 |
+
if self.config._attn_implementation != "eager":
|
| 940 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
| 941 |
+
logger.warning_once(
|
| 942 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 943 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 944 |
+
)
|
| 945 |
+
else:
|
| 946 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 947 |
+
|
| 948 |
+
attn_output, attn_weights = attention_interface(
|
| 949 |
+
self,
|
| 950 |
+
query_states,
|
| 951 |
+
key_states,
|
| 952 |
+
value_states,
|
| 953 |
+
attention_mask,
|
| 954 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 955 |
+
scaling=self.scaling,
|
| 956 |
+
**kwargs,
|
| 957 |
+
)
|
| 958 |
+
|
| 959 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 960 |
+
attn_output = self.attn_out(attn_output)
|
| 961 |
+
|
| 962 |
+
return attn_output, attn_weights
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
class LanguageModelMLP(nn.Module):
|
| 966 |
+
|
| 967 |
+
def __init__(
|
| 968 |
+
self,
|
| 969 |
+
input_dim: int,
|
| 970 |
+
intermediate_size: int,
|
| 971 |
+
hidden_act: str,
|
| 972 |
+
device: Union[str, torch.device] = None,
|
| 973 |
+
):
|
| 974 |
+
super().__init__()
|
| 975 |
+
self.ff_proj = nn.Linear(input_dim, intermediate_size * 2, bias=False, device=device)
|
| 976 |
+
self.ff_out = nn.Linear(intermediate_size, input_dim, bias=False, device=device)
|
| 977 |
+
self.act = ACT2FN[hidden_act]
|
| 978 |
+
|
| 979 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 980 |
+
x = self.ff_proj(x)
|
| 981 |
+
x, gate = x.chunk(2, dim=-1)
|
| 982 |
+
x = self.act(gate) * x
|
| 983 |
+
x = self.ff_out(x)
|
| 984 |
+
return x
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
class MolmoActDecoderLayer(GradientCheckpointingLayer):
|
| 988 |
+
|
| 989 |
+
def __init__(
|
| 990 |
+
self,
|
| 991 |
+
config: MolmoActLlmConfig,
|
| 992 |
+
layer_idx: Optional[int] = None,
|
| 993 |
+
device: Union[str, torch.device] = None
|
| 994 |
+
):
|
| 995 |
+
super().__init__()
|
| 996 |
+
self.config = config
|
| 997 |
+
|
| 998 |
+
self.self_attn = MolmoActAttention(config, layer_idx)
|
| 999 |
+
self.attn_norm = MolmoActRMSNorm(
|
| 1000 |
+
config.hidden_size, eps=config.layer_norm_eps, device=device)
|
| 1001 |
+
self.dropout = nn.Dropout(config.residual_dropout)
|
| 1002 |
+
self.mlp = LanguageModelMLP(
|
| 1003 |
+
config.hidden_size, config.intermediate_size, config.hidden_act, device=device)
|
| 1004 |
+
self.ff_norm = MolmoActRMSNorm(
|
| 1005 |
+
config.hidden_size, eps=config.layer_norm_eps, device=device)
|
| 1006 |
+
|
| 1007 |
+
def forward(
|
| 1008 |
+
self,
|
| 1009 |
+
hidden_states: torch.Tensor,
|
| 1010 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1011 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1012 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1013 |
+
output_attentions: Optional[bool] = False,
|
| 1014 |
+
use_cache: Optional[bool] = False,
|
| 1015 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1016 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 1017 |
+
**kwargs,
|
| 1018 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1019 |
+
"""
|
| 1020 |
+
Args:
|
| 1021 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1022 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 1023 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 1024 |
+
output_attentions (`bool`, *optional*):
|
| 1025 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1026 |
+
returned tensors for more detail.
|
| 1027 |
+
use_cache (`bool`, *optional*):
|
| 1028 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1029 |
+
(see `past_key_values`).
|
| 1030 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 1031 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 1032 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1033 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 1034 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 1035 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 1036 |
+
kwargs (`dict`, *optional*):
|
| 1037 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 1038 |
+
into the model
|
| 1039 |
+
"""
|
| 1040 |
+
|
| 1041 |
+
residual = hidden_states
|
| 1042 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 1043 |
+
|
| 1044 |
+
# Self Attention
|
| 1045 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 1046 |
+
hidden_states=hidden_states,
|
| 1047 |
+
attention_mask=attention_mask,
|
| 1048 |
+
position_ids=position_ids,
|
| 1049 |
+
past_key_value=past_key_value,
|
| 1050 |
+
output_attentions=output_attentions,
|
| 1051 |
+
use_cache=use_cache,
|
| 1052 |
+
cache_position=cache_position,
|
| 1053 |
+
position_embeddings=position_embeddings,
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
hidden_states = residual + self.dropout(hidden_states)
|
| 1057 |
+
|
| 1058 |
+
# Fully Connected
|
| 1059 |
+
residual = hidden_states
|
| 1060 |
+
hidden_states = self.ff_norm(hidden_states)
|
| 1061 |
+
hidden_states = self.mlp(hidden_states)
|
| 1062 |
+
|
| 1063 |
+
hidden_states = residual + self.dropout(hidden_states)
|
| 1064 |
+
|
| 1065 |
+
outputs = (hidden_states,)
|
| 1066 |
+
|
| 1067 |
+
if output_attentions:
|
| 1068 |
+
outputs += (self_attn_weights,)
|
| 1069 |
+
|
| 1070 |
+
return outputs
|
| 1071 |
+
|
| 1072 |
+
|
| 1073 |
+
class MolmoActPostNormDecoderLayer(MolmoActDecoderLayer):
|
| 1074 |
+
def forward(
|
| 1075 |
+
self,
|
| 1076 |
+
hidden_states: torch.Tensor,
|
| 1077 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1078 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1079 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1080 |
+
output_attentions: Optional[bool] = False,
|
| 1081 |
+
use_cache: Optional[bool] = False,
|
| 1082 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1083 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 1084 |
+
**kwargs,
|
| 1085 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1086 |
+
"""
|
| 1087 |
+
Args:
|
| 1088 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1089 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 1090 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 1091 |
+
output_attentions (`bool`, *optional*):
|
| 1092 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1093 |
+
returned tensors for more detail.
|
| 1094 |
+
use_cache (`bool`, *optional*):
|
| 1095 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1096 |
+
(see `past_key_values`).
|
| 1097 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 1098 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 1099 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1100 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 1101 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 1102 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 1103 |
+
kwargs (`dict`, *optional*):
|
| 1104 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 1105 |
+
into the model
|
| 1106 |
+
"""
|
| 1107 |
+
|
| 1108 |
+
residual = hidden_states
|
| 1109 |
+
|
| 1110 |
+
# Self Attention
|
| 1111 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 1112 |
+
hidden_states=hidden_states,
|
| 1113 |
+
attention_mask=attention_mask,
|
| 1114 |
+
position_ids=position_ids,
|
| 1115 |
+
past_key_value=past_key_value,
|
| 1116 |
+
output_attentions=output_attentions,
|
| 1117 |
+
use_cache=use_cache,
|
| 1118 |
+
cache_position=cache_position,
|
| 1119 |
+
position_embeddings=position_embeddings,
|
| 1120 |
+
)
|
| 1121 |
+
hidden_states = self.attn_norm(hidden_states)
|
| 1122 |
+
|
| 1123 |
+
hidden_states = residual + self.dropout(hidden_states)
|
| 1124 |
+
|
| 1125 |
+
# Fully Connected
|
| 1126 |
+
residual = hidden_states
|
| 1127 |
+
hidden_states = self.mlp(hidden_states)
|
| 1128 |
+
hidden_states = self.ff_norm(hidden_states)
|
| 1129 |
+
|
| 1130 |
+
hidden_states = residual + self.dropout(hidden_states)
|
| 1131 |
+
|
| 1132 |
+
outputs = (hidden_states,)
|
| 1133 |
+
|
| 1134 |
+
if output_attentions:
|
| 1135 |
+
outputs += (self_attn_weights,)
|
| 1136 |
+
|
| 1137 |
+
return outputs
|
| 1138 |
+
|
| 1139 |
+
|
| 1140 |
+
class MolmoActEmbedding(nn.Module):
|
| 1141 |
+
def __init__(
|
| 1142 |
+
self,
|
| 1143 |
+
num_embeddings: int,
|
| 1144 |
+
num_new_embeddings: int,
|
| 1145 |
+
features: int,
|
| 1146 |
+
device: Union[str, torch.device] = None,
|
| 1147 |
+
):
|
| 1148 |
+
super().__init__()
|
| 1149 |
+
self.embedding = nn.Parameter(
|
| 1150 |
+
torch.zeros(num_embeddings, features, device=device),
|
| 1151 |
+
)
|
| 1152 |
+
self.new_embedding = nn.Parameter(
|
| 1153 |
+
torch.zeros(num_new_embeddings, features, device=device),
|
| 1154 |
+
)
|
| 1155 |
+
|
| 1156 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 1157 |
+
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING = r"""
|
| 1161 |
+
Args:
|
| 1162 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1163 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1164 |
+
it.
|
| 1165 |
+
|
| 1166 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1167 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1168 |
+
|
| 1169 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1170 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1171 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1172 |
+
|
| 1173 |
+
- 1 for tokens that are **not masked**,
|
| 1174 |
+
- 0 for tokens that are **masked**.
|
| 1175 |
+
|
| 1176 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1177 |
+
|
| 1178 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1179 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1180 |
+
|
| 1181 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 1182 |
+
`past_key_values`).
|
| 1183 |
+
|
| 1184 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1185 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1186 |
+
information on the default strategy.
|
| 1187 |
+
|
| 1188 |
+
- 1 indicates the head is **not masked**,
|
| 1189 |
+
- 0 indicates the head is **masked**.
|
| 1190 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1191 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1192 |
+
config.n_positions - 1]`.
|
| 1193 |
+
|
| 1194 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1195 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 1196 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1197 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 1198 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 1199 |
+
|
| 1200 |
+
Two formats are allowed:
|
| 1201 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 1202 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 1203 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1204 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 1205 |
+
cache format.
|
| 1206 |
+
|
| 1207 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 1208 |
+
legacy cache format will be returned.
|
| 1209 |
+
|
| 1210 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1211 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1212 |
+
of shape `(batch_size, sequence_length)`.
|
| 1213 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1214 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1215 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1216 |
+
model's internal embedding lookup matrix.
|
| 1217 |
+
use_cache (`bool`, *optional*):
|
| 1218 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1219 |
+
`past_key_values`).
|
| 1220 |
+
output_attentions (`bool`, *optional*):
|
| 1221 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1222 |
+
tensors for more detail.
|
| 1223 |
+
output_hidden_states (`bool`, *optional*):
|
| 1224 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1225 |
+
more detail.
|
| 1226 |
+
return_dict (`bool`, *optional*):
|
| 1227 |
+
Whether or not to return a [`CausalLMOutputWithPast`] instead of a plain tuple.
|
| 1228 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 1229 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 1230 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 1231 |
+
the complete sequence length.
|
| 1232 |
+
"""
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
@add_start_docstrings(
|
| 1236 |
+
"The bare MolmoAct text-only model outputting raw hidden-states without any specific head on top.",
|
| 1237 |
+
MOLMO_START_DOCSTRING,
|
| 1238 |
+
)
|
| 1239 |
+
class MolmoActLlm(MolmoActPreTrainedModel):
|
| 1240 |
+
def __init__(self, config: MolmoActLlmConfig):
|
| 1241 |
+
super().__init__(config)
|
| 1242 |
+
self.config = config
|
| 1243 |
+
if config.additional_vocab_size is not None:
|
| 1244 |
+
self.wte = MolmoActEmbedding(
|
| 1245 |
+
config.vocab_size,
|
| 1246 |
+
config.additional_vocab_size,
|
| 1247 |
+
config.hidden_size,
|
| 1248 |
+
)
|
| 1249 |
+
else:
|
| 1250 |
+
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 1251 |
+
self.emb_drop = nn.Dropout(config.embedding_dropout)
|
| 1252 |
+
decoder_layer = MolmoActPostNormDecoderLayer if config.norm_after else MolmoActDecoderLayer
|
| 1253 |
+
self.blocks = nn.ModuleList(
|
| 1254 |
+
[decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1255 |
+
)
|
| 1256 |
+
self.ln_f = MolmoActRMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1257 |
+
self.rotary_emb = MolmoActRotaryEmbedding(config)
|
| 1258 |
+
self.gradient_checkpointing = False
|
| 1259 |
+
|
| 1260 |
+
# Initialize weights and apply final processing
|
| 1261 |
+
self.post_init()
|
| 1262 |
+
|
| 1263 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 1264 |
+
return self.wte
|
| 1265 |
+
|
| 1266 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
| 1267 |
+
self.wte = value
|
| 1268 |
+
|
| 1269 |
+
@can_return_tuple
|
| 1270 |
+
def forward(
|
| 1271 |
+
self,
|
| 1272 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1273 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1274 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1275 |
+
past_key_values: Optional[Cache] = None,
|
| 1276 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1277 |
+
use_cache: Optional[bool] = None,
|
| 1278 |
+
output_attentions: Optional[bool] = None,
|
| 1279 |
+
output_hidden_states: Optional[bool] = None,
|
| 1280 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1281 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 1282 |
+
) -> BaseModelOutputWithPast:
|
| 1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1284 |
+
output_hidden_states = (
|
| 1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1286 |
+
)
|
| 1287 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1288 |
+
|
| 1289 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1290 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1291 |
+
|
| 1292 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 1293 |
+
logger.warning_once(
|
| 1294 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 1295 |
+
)
|
| 1296 |
+
use_cache = False
|
| 1297 |
+
|
| 1298 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
| 1299 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
| 1300 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
| 1301 |
+
|
| 1302 |
+
if inputs_embeds is None:
|
| 1303 |
+
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
| 1304 |
+
inputs_embeds = self.wte(input_ids)
|
| 1305 |
+
|
| 1306 |
+
if use_cache and past_key_values is None:
|
| 1307 |
+
past_key_values = DynamicCache()
|
| 1308 |
+
|
| 1309 |
+
if cache_position is None:
|
| 1310 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1311 |
+
cache_position = torch.arange(
|
| 1312 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1313 |
+
)
|
| 1314 |
+
|
| 1315 |
+
if position_ids is None:
|
| 1316 |
+
position_ids = cache_position.unsqueeze(0)
|
| 1317 |
+
|
| 1318 |
+
causal_mask = self._update_causal_mask(
|
| 1319 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 1320 |
+
)
|
| 1321 |
+
|
| 1322 |
+
hidden_states = inputs_embeds
|
| 1323 |
+
|
| 1324 |
+
# create position embeddings to be shared across the decoder layers
|
| 1325 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1326 |
+
|
| 1327 |
+
# decoder layers
|
| 1328 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1329 |
+
all_self_attns = () if output_attentions else None
|
| 1330 |
+
|
| 1331 |
+
for decoder_block in self.blocks[: self.config.num_hidden_layers]:
|
| 1332 |
+
if output_hidden_states:
|
| 1333 |
+
all_hidden_states += (hidden_states,)
|
| 1334 |
+
|
| 1335 |
+
layer_outputs = decoder_block(
|
| 1336 |
+
hidden_states,
|
| 1337 |
+
attention_mask=causal_mask,
|
| 1338 |
+
position_ids=position_ids,
|
| 1339 |
+
past_key_value=past_key_values,
|
| 1340 |
+
output_attentions=output_attentions,
|
| 1341 |
+
use_cache=use_cache,
|
| 1342 |
+
cache_position=cache_position,
|
| 1343 |
+
position_embeddings=position_embeddings,
|
| 1344 |
+
**flash_attn_kwargs,
|
| 1345 |
+
)
|
| 1346 |
+
|
| 1347 |
+
hidden_states = layer_outputs[0]
|
| 1348 |
+
|
| 1349 |
+
if output_attentions:
|
| 1350 |
+
all_self_attns += (layer_outputs[1],)
|
| 1351 |
+
|
| 1352 |
+
hidden_states = self.ln_f(hidden_states)
|
| 1353 |
+
|
| 1354 |
+
# add hidden states from the last decoder layer
|
| 1355 |
+
if output_hidden_states:
|
| 1356 |
+
all_hidden_states += (hidden_states,)
|
| 1357 |
+
|
| 1358 |
+
return BaseModelOutputWithPast(
|
| 1359 |
+
last_hidden_state=hidden_states,
|
| 1360 |
+
past_key_values=past_key_values if use_cache else None,
|
| 1361 |
+
hidden_states=all_hidden_states,
|
| 1362 |
+
attentions=all_self_attns,
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
+
def _update_causal_mask(
|
| 1366 |
+
self,
|
| 1367 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
| 1368 |
+
input_tensor: torch.Tensor,
|
| 1369 |
+
cache_position: torch.Tensor,
|
| 1370 |
+
past_key_values: Cache,
|
| 1371 |
+
output_attentions: bool = False,
|
| 1372 |
+
):
|
| 1373 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1374 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 1375 |
+
return attention_mask
|
| 1376 |
+
return None
|
| 1377 |
+
if self.config._attn_implementation == "flex_attention":
|
| 1378 |
+
if isinstance(attention_mask, torch.Tensor):
|
| 1379 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
| 1380 |
+
return attention_mask
|
| 1381 |
+
|
| 1382 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1383 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1384 |
+
# to infer the attention mask.
|
| 1385 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1386 |
+
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
|
| 1387 |
+
|
| 1388 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1389 |
+
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
|
| 1390 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1391 |
+
attention_mask,
|
| 1392 |
+
inputs_embeds=input_tensor,
|
| 1393 |
+
past_key_values_length=past_seen_tokens,
|
| 1394 |
+
is_training=self.training,
|
| 1395 |
+
):
|
| 1396 |
+
return None
|
| 1397 |
+
|
| 1398 |
+
dtype = input_tensor.dtype
|
| 1399 |
+
sequence_length = input_tensor.shape[1]
|
| 1400 |
+
if using_compilable_cache:
|
| 1401 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 1402 |
+
else:
|
| 1403 |
+
target_length = (
|
| 1404 |
+
attention_mask.shape[-1]
|
| 1405 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1406 |
+
else past_seen_tokens + sequence_length + 1
|
| 1407 |
+
)
|
| 1408 |
+
|
| 1409 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1410 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1411 |
+
attention_mask,
|
| 1412 |
+
sequence_length=sequence_length,
|
| 1413 |
+
target_length=target_length,
|
| 1414 |
+
dtype=dtype,
|
| 1415 |
+
cache_position=cache_position,
|
| 1416 |
+
batch_size=input_tensor.shape[0],
|
| 1417 |
+
)
|
| 1418 |
+
|
| 1419 |
+
if (
|
| 1420 |
+
self.config._attn_implementation == "sdpa"
|
| 1421 |
+
and attention_mask is not None
|
| 1422 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
| 1423 |
+
and not output_attentions
|
| 1424 |
+
):
|
| 1425 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1426 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1427 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1428 |
+
min_dtype = torch.finfo(dtype).min
|
| 1429 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 1430 |
+
|
| 1431 |
+
return causal_mask
|
| 1432 |
+
|
| 1433 |
+
@staticmethod
|
| 1434 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1435 |
+
attention_mask: torch.Tensor,
|
| 1436 |
+
sequence_length: int,
|
| 1437 |
+
target_length: int,
|
| 1438 |
+
dtype: torch.dtype,
|
| 1439 |
+
cache_position: torch.Tensor,
|
| 1440 |
+
batch_size: int,
|
| 1441 |
+
**kwargs,
|
| 1442 |
+
):
|
| 1443 |
+
"""
|
| 1444 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1445 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1446 |
+
|
| 1447 |
+
Args:
|
| 1448 |
+
attention_mask (`torch.Tensor`):
|
| 1449 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 1450 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 1451 |
+
sequence_length (`int`):
|
| 1452 |
+
The sequence length being processed.
|
| 1453 |
+
target_length (`int`):
|
| 1454 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 1455 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1456 |
+
dtype (`torch.dtype`):
|
| 1457 |
+
The dtype to use for the 4D attention mask.
|
| 1458 |
+
cache_position (`torch.Tensor`):
|
| 1459 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1460 |
+
batch_size (`torch.Tensor`):
|
| 1461 |
+
Batch size.
|
| 1462 |
+
"""
|
| 1463 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1464 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1465 |
+
causal_mask = attention_mask
|
| 1466 |
+
else:
|
| 1467 |
+
min_dtype = torch.finfo(dtype).min
|
| 1468 |
+
causal_mask = torch.full(
|
| 1469 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
| 1470 |
+
)
|
| 1471 |
+
if sequence_length != 1:
|
| 1472 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1473 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
| 1474 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1475 |
+
if attention_mask is not None:
|
| 1476 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1477 |
+
mask_length = attention_mask.shape[-1]
|
| 1478 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 1479 |
+
causal_mask.device
|
| 1480 |
+
)
|
| 1481 |
+
padding_mask = padding_mask == 0
|
| 1482 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1483 |
+
padding_mask, min_dtype
|
| 1484 |
+
)
|
| 1485 |
+
|
| 1486 |
+
return causal_mask
|
| 1487 |
+
|
| 1488 |
+
|
| 1489 |
+
@add_start_docstrings(
|
| 1490 |
+
"The MolmoAct text-only model which consists of a language model + lm head.",
|
| 1491 |
+
MOLMO_START_DOCSTRING,
|
| 1492 |
+
)
|
| 1493 |
+
class MolmoActForCausalLM(MolmoActPreTrainedModel, GenerationMixin):
|
| 1494 |
+
_tied_weights_keys = [] # Weights are not tied
|
| 1495 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 1496 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 1497 |
+
base_model_prefix = "model"
|
| 1498 |
+
|
| 1499 |
+
def __init__(self, config: MolmoActLlmConfig):
|
| 1500 |
+
super().__init__(config)
|
| 1501 |
+
self.model = MolmoActLlm(config)
|
| 1502 |
+
self.vocab_size = config.vocab_size
|
| 1503 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1504 |
+
|
| 1505 |
+
# Initialize weights and apply final processing
|
| 1506 |
+
self.post_init()
|
| 1507 |
+
|
| 1508 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 1509 |
+
return self.model.wte
|
| 1510 |
+
|
| 1511 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
| 1512 |
+
self.model.wte = value
|
| 1513 |
+
|
| 1514 |
+
def get_output_embeddings(self):
|
| 1515 |
+
return self.lm_head
|
| 1516 |
+
|
| 1517 |
+
def set_output_embeddings(self, value: torch.nn.Module) -> None:
|
| 1518 |
+
self.lm_head = value
|
| 1519 |
+
|
| 1520 |
+
def set_decoder(self, decoder: torch.nn.Module) -> None:
|
| 1521 |
+
self.model = decoder
|
| 1522 |
+
|
| 1523 |
+
def get_decoder(self) -> torch.nn.Module:
|
| 1524 |
+
return self.model
|
| 1525 |
+
|
| 1526 |
+
@can_return_tuple
|
| 1527 |
+
@add_start_docstrings_to_model_forward(MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING)
|
| 1528 |
+
def forward(
|
| 1529 |
+
self,
|
| 1530 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1531 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1532 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1533 |
+
past_key_values: Optional[Cache] = None,
|
| 1534 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1535 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1536 |
+
use_cache: Optional[bool] = None,
|
| 1537 |
+
output_attentions: Optional[bool] = None,
|
| 1538 |
+
output_hidden_states: Optional[bool] = None,
|
| 1539 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1540 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1541 |
+
**kwargs,
|
| 1542 |
+
) -> CausalLMOutputWithPast:
|
| 1543 |
+
r"""
|
| 1544 |
+
```python
|
| 1545 |
+
>>> from transformers import AutoTokenizer, MolmoActForCausalLM
|
| 1546 |
+
|
| 1547 |
+
>>> model = MolmoActForCausalLM.from_pretrained("...")
|
| 1548 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("...")
|
| 1549 |
+
|
| 1550 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1551 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1552 |
+
|
| 1553 |
+
>>> # Generate
|
| 1554 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1555 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1556 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1557 |
+
```"""
|
| 1558 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1559 |
+
output_hidden_states = (
|
| 1560 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1561 |
+
)
|
| 1562 |
+
|
| 1563 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1564 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 1565 |
+
input_ids=input_ids,
|
| 1566 |
+
attention_mask=attention_mask,
|
| 1567 |
+
position_ids=position_ids,
|
| 1568 |
+
past_key_values=past_key_values,
|
| 1569 |
+
inputs_embeds=inputs_embeds,
|
| 1570 |
+
use_cache=use_cache,
|
| 1571 |
+
output_attentions=output_attentions,
|
| 1572 |
+
output_hidden_states=output_hidden_states,
|
| 1573 |
+
cache_position=cache_position,
|
| 1574 |
+
**kwargs,
|
| 1575 |
+
)
|
| 1576 |
+
|
| 1577 |
+
hidden_states = outputs.last_hidden_state
|
| 1578 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1579 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1580 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 1581 |
+
|
| 1582 |
+
loss = None
|
| 1583 |
+
if labels is not None:
|
| 1584 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 1585 |
+
|
| 1586 |
+
return CausalLMOutputWithPast(
|
| 1587 |
+
loss=loss,
|
| 1588 |
+
logits=logits,
|
| 1589 |
+
past_key_values=outputs.past_key_values,
|
| 1590 |
+
hidden_states=outputs.hidden_states,
|
| 1591 |
+
attentions=outputs.attentions,
|
| 1592 |
+
)
|
| 1593 |
+
|
| 1594 |
+
|
| 1595 |
+
MOLMO2_INPUTS_DOCSTRING = r"""
|
| 1596 |
+
Args:
|
| 1597 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1598 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1599 |
+
it.
|
| 1600 |
+
|
| 1601 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1602 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1603 |
+
|
| 1604 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1605 |
+
images (`torch.FloatTensor` of shape `(batch_size, n_crops, 27*27, 3*14*14)`, *optional*):
|
| 1606 |
+
The input crops in with pixel values between 0 and 1 and normalized with SigLIP2 mean/std
|
| 1607 |
+
|
| 1608 |
+
Each crop contains 27x27 patches with 14*14*3 pixel values
|
| 1609 |
+
image_masks (`torch.FloatTensor` of shape `(batch_size, n_crops, n_patches, n_features)`, *optional*):
|
| 1610 |
+
Image masks showing what percent of each patch is paddding
|
| 1611 |
+
pooled_patches_idx (`torch.LongTensor` of shape `(batch_size, n_image_tokens, n_pooled_patches)`):
|
| 1612 |
+
For each patch_id tokens in `input_ids`, the indices of the patches in `images`
|
| 1613 |
+
to pool for that token, masked with -1
|
| 1614 |
+
means ignore the patch.
|
| 1615 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1616 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1617 |
+
|
| 1618 |
+
- 1 for tokens that are **not masked**,
|
| 1619 |
+
- 0 for tokens that are **masked**.
|
| 1620 |
+
|
| 1621 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1622 |
+
|
| 1623 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1624 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1625 |
+
|
| 1626 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 1627 |
+
`past_key_values`).
|
| 1628 |
+
|
| 1629 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1630 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1631 |
+
information on the default strategy.
|
| 1632 |
+
|
| 1633 |
+
- 1 indicates the head is **not masked**,
|
| 1634 |
+
- 0 indicates the head is **masked**.
|
| 1635 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1636 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1637 |
+
config.n_positions - 1]`.
|
| 1638 |
+
|
| 1639 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1640 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 1641 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1642 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 1643 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 1644 |
+
|
| 1645 |
+
Two formats are allowed:
|
| 1646 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 1647 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 1648 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1649 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 1650 |
+
cache format.
|
| 1651 |
+
|
| 1652 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 1653 |
+
legacy cache format will be returned.
|
| 1654 |
+
|
| 1655 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1656 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1657 |
+
of shape `(batch_size, sequence_length)`.
|
| 1658 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1659 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1660 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1661 |
+
model's internal embedding lookup matrix.
|
| 1662 |
+
use_cache (`bool`, *optional*):
|
| 1663 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1664 |
+
`past_key_values`).
|
| 1665 |
+
output_attentions (`bool`, *optional*):
|
| 1666 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1667 |
+
tensors for more detail.
|
| 1668 |
+
output_hidden_states (`bool`, *optional*):
|
| 1669 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1670 |
+
more detail.
|
| 1671 |
+
return_dict (`bool`, *optional*):
|
| 1672 |
+
Whether or not to return a [`MolmoActCausalLMOutputWithPast`] instead of a plain tuple.
|
| 1673 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 1674 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 1675 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 1676 |
+
the complete sequence length.
|
| 1677 |
+
"""
|
| 1678 |
+
|
| 1679 |
+
|
| 1680 |
+
@add_start_docstrings(
|
| 1681 |
+
"The bare MolmoAct model outputting raw hidden-states without any specific head on top.",
|
| 1682 |
+
MOLMO_START_DOCSTRING,
|
| 1683 |
+
)
|
| 1684 |
+
class MolmoActModel(MolmoActPreTrainedModel):
|
| 1685 |
+
_checkpoint_conversion_mapping = {}
|
| 1686 |
+
|
| 1687 |
+
def __init__(self, config: MolmoActConfig):
|
| 1688 |
+
super().__init__(config)
|
| 1689 |
+
self.transformer: MolmoActLlm = MolmoActLlm(config.llm_config)
|
| 1690 |
+
self.vision_backbone: Optional[MolmoActVisionBackbone] = None
|
| 1691 |
+
if config.vit_config is not None and config.adapter_config is not None:
|
| 1692 |
+
self.vision_backbone = MolmoActVisionBackbone(config.vit_config, config.adapter_config)
|
| 1693 |
+
|
| 1694 |
+
# Initialize weights and apply final processing
|
| 1695 |
+
self.post_init()
|
| 1696 |
+
|
| 1697 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 1698 |
+
return self.transformer.wte
|
| 1699 |
+
|
| 1700 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
| 1701 |
+
self.transformer.wte = value
|
| 1702 |
+
|
| 1703 |
+
@property
|
| 1704 |
+
def device(self) -> torch.device:
|
| 1705 |
+
return self.transformer.ln_f.weight.device
|
| 1706 |
+
|
| 1707 |
+
def build_input_embeddings(
|
| 1708 |
+
self,
|
| 1709 |
+
input_ids: torch.LongTensor,
|
| 1710 |
+
images: Optional[torch.FloatTensor] = None, # image inputs
|
| 1711 |
+
image_masks: Optional[torch.Tensor] = None,
|
| 1712 |
+
pooled_patches_idx: Optional[torch.LongTensor] = None,
|
| 1713 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 1714 |
+
|
| 1715 |
+
# Get embeddings of input.
|
| 1716 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1717 |
+
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
| 1718 |
+
x = self.transformer.wte(input_ids)
|
| 1719 |
+
|
| 1720 |
+
image_features: Optional[torch.FloatTensor] = None
|
| 1721 |
+
if images is not None:
|
| 1722 |
+
image_features = self.vision_backbone(images, pooled_patches_idx)
|
| 1723 |
+
is_image_patch = input_ids.view(-1) == self.config.image_patch_id
|
| 1724 |
+
assert is_image_patch.sum() == len(image_features)
|
| 1725 |
+
x.view(-1, x.shape[-1])[is_image_patch] += image_features
|
| 1726 |
+
|
| 1727 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1728 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
| 1729 |
+
|
| 1730 |
+
return x, image_features
|
| 1731 |
+
|
| 1732 |
+
@can_return_tuple
|
| 1733 |
+
def forward(
|
| 1734 |
+
self,
|
| 1735 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1736 |
+
images: Optional[torch.FloatTensor] = None,
|
| 1737 |
+
image_masks: Optional[torch.Tensor] = None,
|
| 1738 |
+
pooled_patches_idx: Optional[torch.Tensor] = None,
|
| 1739 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1740 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1741 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1742 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1743 |
+
use_cache: Optional[bool] = None,
|
| 1744 |
+
output_attentions: Optional[bool] = None,
|
| 1745 |
+
output_hidden_states: Optional[bool] = None,
|
| 1746 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1747 |
+
) -> Union[Tuple, MolmoActModelOutputWithPast]:
|
| 1748 |
+
|
| 1749 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1750 |
+
output_hidden_states = (
|
| 1751 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1752 |
+
)
|
| 1753 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1754 |
+
|
| 1755 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1756 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1757 |
+
|
| 1758 |
+
if images is not None and inputs_embeds is not None:
|
| 1759 |
+
raise ValueError(
|
| 1760 |
+
"You cannot specify both images and inputs_embeds at the same time."
|
| 1761 |
+
)
|
| 1762 |
+
|
| 1763 |
+
if inputs_embeds is None:
|
| 1764 |
+
inputs_embeds, image_features = self.build_input_embeddings(
|
| 1765 |
+
input_ids, images, image_masks, pooled_patches_idx)
|
| 1766 |
+
|
| 1767 |
+
outputs = self.transformer(
|
| 1768 |
+
attention_mask=attention_mask,
|
| 1769 |
+
position_ids=position_ids,
|
| 1770 |
+
past_key_values=past_key_values,
|
| 1771 |
+
inputs_embeds=inputs_embeds,
|
| 1772 |
+
use_cache=use_cache,
|
| 1773 |
+
output_attentions=output_attentions,
|
| 1774 |
+
output_hidden_states=output_hidden_states,
|
| 1775 |
+
cache_position=cache_position,
|
| 1776 |
+
)
|
| 1777 |
+
|
| 1778 |
+
return MolmoActModelOutputWithPast(
|
| 1779 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1780 |
+
past_key_values=outputs.past_key_values,
|
| 1781 |
+
hidden_states=outputs.hidden_states,
|
| 1782 |
+
attentions=outputs.attentions,
|
| 1783 |
+
image_hidden_states=image_features if images is not None else None,
|
| 1784 |
+
)
|
| 1785 |
+
|
| 1786 |
+
@add_start_docstrings(
|
| 1787 |
+
"The MolmoAct model which consists of a vision backbone and a language model + lm head.",
|
| 1788 |
+
MOLMO_START_DOCSTRING,
|
| 1789 |
+
)
|
| 1790 |
+
class MolmoActForActionReasoning(MolmoActPreTrainedModel, GenerationMixin):
|
| 1791 |
+
_checkpoint_conversion_mapping = {}
|
| 1792 |
+
_tied_weights_keys = [] # Weights are not tied
|
| 1793 |
+
config_class = MolmoActConfig
|
| 1794 |
+
|
| 1795 |
+
def __init__(self, config: MolmoActConfig):
|
| 1796 |
+
super().__init__(config)
|
| 1797 |
+
|
| 1798 |
+
self.model = MolmoActModel(config)
|
| 1799 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1800 |
+
self.vocab_size = config.vocab_size
|
| 1801 |
+
|
| 1802 |
+
# Initialize weights and apply final processing
|
| 1803 |
+
self.post_init()
|
| 1804 |
+
|
| 1805 |
+
# --- Action parsing / de-tokenization setup ---
|
| 1806 |
+
# Stats dict expected under config.norm_stats (per-dataset key). If missing, default to empty.
|
| 1807 |
+
self.norm_stats = getattr(config, "norm_stats", None) or {}
|
| 1808 |
+
# Number of discretization bins used for action tokens, defaults to 256.
|
| 1809 |
+
self.n_action_bins = getattr(config, "n_action_bins", 256)
|
| 1810 |
+
# Precompute bin centers in [-1, 1] for inverse token to value mapping.
|
| 1811 |
+
self.bins = np.linspace(-1.0, 1.0, self.n_action_bins)
|
| 1812 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
| 1813 |
+
# Lazily constructed tokenizer for converting token strings to ids
|
| 1814 |
+
self._qwen_tokenizer = None
|
| 1815 |
+
|
| 1816 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 1817 |
+
return self.model.transformer.wte
|
| 1818 |
+
|
| 1819 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
| 1820 |
+
self.model.transformer.wte = value
|
| 1821 |
+
|
| 1822 |
+
def get_output_embeddings(self):
|
| 1823 |
+
self.lm_head
|
| 1824 |
+
|
| 1825 |
+
def set_output_embeddings(self, value: torch.nn.Module) -> None:
|
| 1826 |
+
self.lm_head = value
|
| 1827 |
+
|
| 1828 |
+
# Make modules available throught conditional class for BC
|
| 1829 |
+
@property
|
| 1830 |
+
def language_model(self) -> torch.nn.Module:
|
| 1831 |
+
return self.model.transformer
|
| 1832 |
+
|
| 1833 |
+
@property
|
| 1834 |
+
def vision_backbone(self) -> torch.nn.Module:
|
| 1835 |
+
return self.model.vision_backbone
|
| 1836 |
+
|
| 1837 |
+
@can_return_tuple
|
| 1838 |
+
@add_start_docstrings_to_model_forward(MOLMO2_INPUTS_DOCSTRING)
|
| 1839 |
+
def forward(
|
| 1840 |
+
self,
|
| 1841 |
+
input_ids: torch.LongTensor = None,
|
| 1842 |
+
images: Optional[torch.Tensor] = None,
|
| 1843 |
+
image_masks: Optional[torch.Tensor] = None,
|
| 1844 |
+
pooled_patches_idx: Optional[torch.Tensor] = None,
|
| 1845 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1846 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1847 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1848 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1849 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1850 |
+
use_cache: Optional[bool] = None,
|
| 1851 |
+
output_attentions: Optional[bool] = None,
|
| 1852 |
+
output_hidden_states: Optional[bool] = None,
|
| 1853 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1854 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1855 |
+
**kwargs,
|
| 1856 |
+
) -> Union[Tuple, MolmoActCausalLMOutputWithPast]:
|
| 1857 |
+
r"""
|
| 1858 |
+
```python
|
| 1859 |
+
>>> from PIL import Image
|
| 1860 |
+
>>> import requests
|
| 1861 |
+
>>> from transformers import AutoProcessor, MolmoActForActionReasoning
|
| 1862 |
+
|
| 1863 |
+
>>> model = MolmoActForActionReasoning.from_pretrained("...")
|
| 1864 |
+
>>> processor = AutoProcessor.from_pretrained("...")
|
| 1865 |
+
|
| 1866 |
+
>>> prompt = "What's the content of the image?"
|
| 1867 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 1868 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1869 |
+
|
| 1870 |
+
>>> inputs = processor(images=image, text=prompt, apply_chat_template=True, return_tensors="pt")
|
| 1871 |
+
|
| 1872 |
+
>>> # Generate
|
| 1873 |
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=15)
|
| 1874 |
+
>>> generated_tokens = generated_ids[:, inputs['input_ids'].size(1):]
|
| 1875 |
+
>>> processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1876 |
+
"The image features a busy city street with a stop sign prominently displayed"
|
| 1877 |
+
```"""
|
| 1878 |
+
outputs = self.model(
|
| 1879 |
+
input_ids=input_ids,
|
| 1880 |
+
images=images,
|
| 1881 |
+
image_masks=image_masks,
|
| 1882 |
+
pooled_patches_idx=pooled_patches_idx,
|
| 1883 |
+
attention_mask=attention_mask,
|
| 1884 |
+
position_ids=position_ids,
|
| 1885 |
+
past_key_values=past_key_values,
|
| 1886 |
+
inputs_embeds=inputs_embeds,
|
| 1887 |
+
use_cache=use_cache,
|
| 1888 |
+
output_attentions=output_attentions,
|
| 1889 |
+
output_hidden_states=output_hidden_states,
|
| 1890 |
+
cache_position=cache_position,
|
| 1891 |
+
)
|
| 1892 |
+
|
| 1893 |
+
hidden_states = outputs.last_hidden_state
|
| 1894 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1895 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 1896 |
+
|
| 1897 |
+
loss = None
|
| 1898 |
+
if labels is not None:
|
| 1899 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size)
|
| 1900 |
+
|
| 1901 |
+
return MolmoActCausalLMOutputWithPast(
|
| 1902 |
+
loss=loss,
|
| 1903 |
+
logits=logits,
|
| 1904 |
+
past_key_values=outputs.past_key_values,
|
| 1905 |
+
hidden_states=outputs.hidden_states,
|
| 1906 |
+
attentions=outputs.attentions,
|
| 1907 |
+
image_hidden_states=outputs.image_hidden_states,
|
| 1908 |
+
)
|
| 1909 |
+
|
| 1910 |
+
# ===== Utilities for action parsing / un-normalization =====
|
| 1911 |
+
def _check_unnorm_key(self, unnorm_key: Optional[str]) -> str:
|
| 1912 |
+
"""Validate and resolve which dataset key to use from self.norm_stats."""
|
| 1913 |
+
if not self.norm_stats:
|
| 1914 |
+
raise ValueError("No norm_stats found in config; cannot unnormalize actions.")
|
| 1915 |
+
if unnorm_key is None:
|
| 1916 |
+
if len(self.norm_stats) != 1:
|
| 1917 |
+
raise ValueError(
|
| 1918 |
+
f"Model has multiple dataset stats; please pass `unnorm_key` from {list(self.norm_stats.keys())}"
|
| 1919 |
+
)
|
| 1920 |
+
return next(iter(self.norm_stats.keys()))
|
| 1921 |
+
if unnorm_key not in self.norm_stats:
|
| 1922 |
+
raise ValueError(f"`unnorm_key`={unnorm_key!r} not in {list(self.norm_stats.keys())}")
|
| 1923 |
+
return unnorm_key
|
| 1924 |
+
|
| 1925 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
| 1926 |
+
"""Return action dimensionality from q01 stats length for the dataset key."""
|
| 1927 |
+
key = self._check_unnorm_key(unnorm_key)
|
| 1928 |
+
return len(self.norm_stats[key]["action"]["q01"])
|
| 1929 |
+
|
| 1930 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
| 1931 |
+
"""Return the full action stats dict for a given dataset key."""
|
| 1932 |
+
key = self._check_unnorm_key(unnorm_key)
|
| 1933 |
+
return self.norm_stats[key]["action"]
|
| 1934 |
+
|
| 1935 |
+
@torch.no_grad()
|
| 1936 |
+
def parse_action(self, text: str, unnorm_key: Optional[str] = None) -> list:
|
| 1937 |
+
"""
|
| 1938 |
+
Parse a generated text to extract one 1×D action token list, decode to continuous values,
|
| 1939 |
+
and unnormalize using dataset-specific stats from `config.norm_stats`.
|
| 1940 |
+
|
| 1941 |
+
This follows the pipeline used in `experiments/robot/libero/main_libero_10_evaluation.py`:
|
| 1942 |
+
- Find bracketed token lists following the phrase "the action that the robot should take is" (case-insensitive),
|
| 1943 |
+
falling back to any bracketed list in the text.
|
| 1944 |
+
- Convert token strings → ids via Qwen2Tokenizer.
|
| 1945 |
+
- Map ids → discretized bin indices using: `discretized = vocab_size - token_id - 1` (clipped to bins)
|
| 1946 |
+
- Convert bins → normalized actions in [-1, 1] using precomputed `bin_centers`.
|
| 1947 |
+
- Unnormalize with q01/q99 and optional `mask` from norm_stats.
|
| 1948 |
+
|
| 1949 |
+
Returns:
|
| 1950 |
+
List[float]: unnormalized action vector of length D.
|
| 1951 |
+
"""
|
| 1952 |
+
# Resolve action dimension and stats
|
| 1953 |
+
action_dim = self.get_action_dim(unnorm_key)
|
| 1954 |
+
stats = self.get_action_stats(unnorm_key)
|
| 1955 |
+
q01 = np.asarray(stats["q01"], dtype=np.float32)
|
| 1956 |
+
q99 = np.asarray(stats["q99"], dtype=np.float32)
|
| 1957 |
+
mask = np.asarray(stats.get("mask", np.ones_like(q01, dtype=bool)), dtype=bool)
|
| 1958 |
+
|
| 1959 |
+
# Lazily load the tokenizer (shared across calls)
|
| 1960 |
+
if self._qwen_tokenizer is None:
|
| 1961 |
+
self._qwen_tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen2-7B")
|
| 1962 |
+
|
| 1963 |
+
token_lists = extract_action_token_lists(text, only_len=action_dim)
|
| 1964 |
+
action_lists = []
|
| 1965 |
+
|
| 1966 |
+
# Choose the first list (temporal aggregation, if any, should be done by the caller)
|
| 1967 |
+
for tokens in token_lists:
|
| 1968 |
+
|
| 1969 |
+
# Convert tokens → ids (replace None with vocab_size to avoid negatives)
|
| 1970 |
+
ids = self._qwen_tokenizer.convert_tokens_to_ids(tokens)
|
| 1971 |
+
ids = [self._qwen_tokenizer.vocab_size if i is None else int(i) for i in ids]
|
| 1972 |
+
ids = np.asarray(ids, dtype=np.int64)
|
| 1973 |
+
|
| 1974 |
+
# ids → discretized bin indices → normalized actions in [-1, 1]
|
| 1975 |
+
discretized = self._qwen_tokenizer.vocab_size - ids
|
| 1976 |
+
discretized = np.clip(discretized - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
| 1977 |
+
normalized = self.bin_centers[discretized]
|
| 1978 |
+
|
| 1979 |
+
# Unnormalize using per-dimension statistics
|
| 1980 |
+
unnorm = 0.5 * (normalized + 1.0) * (q99 - q01) + q01
|
| 1981 |
+
actions = np.where(mask, unnorm, normalized)
|
| 1982 |
+
|
| 1983 |
+
action_lists.append([float(x) for x in actions])
|
| 1984 |
+
|
| 1985 |
+
# Return a Python list of float actions
|
| 1986 |
+
return action_lists
|
| 1987 |
+
|
| 1988 |
+
@torch.no_grad()
|
| 1989 |
+
def parse_trace(self, text: str) -> list:
|
| 1990 |
+
return extract_trace_lists(text, point_len=2, min_points=1)
|
| 1991 |
+
|
| 1992 |
+
@torch.no_grad()
|
| 1993 |
+
def parse_depth(self, text: str) -> list:
|
| 1994 |
+
return extract_depth_string(text, include_tags=True)
|
| 1995 |
+
|
| 1996 |
+
|
| 1997 |
+
def prepare_inputs_for_generation(
|
| 1998 |
+
self,
|
| 1999 |
+
input_ids: torch.LongTensor,
|
| 2000 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 2001 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 2002 |
+
images: Optional[torch.FloatTensor] = None,
|
| 2003 |
+
image_masks: Optional[torch.Tensor] = None,
|
| 2004 |
+
pooled_patches_idx: Optional[torch.Tensor] = None,
|
| 2005 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 2006 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 2007 |
+
logits_to_keep: Optional[Union[int, torch.Tensor]] = None,
|
| 2008 |
+
**kwargs,
|
| 2009 |
+
):
|
| 2010 |
+
|
| 2011 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 2012 |
+
input_ids,
|
| 2013 |
+
past_key_values=past_key_values,
|
| 2014 |
+
inputs_embeds=inputs_embeds,
|
| 2015 |
+
attention_mask=attention_mask,
|
| 2016 |
+
cache_position=cache_position,
|
| 2017 |
+
logits_to_keep=logits_to_keep,
|
| 2018 |
+
**kwargs,
|
| 2019 |
+
)
|
| 2020 |
+
|
| 2021 |
+
if cache_position[0] == 0:
|
| 2022 |
+
model_inputs["images"] = images
|
| 2023 |
+
model_inputs["pooled_patches_idx"] = pooled_patches_idx
|
| 2024 |
+
model_inputs["image_masks"] = image_masks
|
| 2025 |
+
|
| 2026 |
+
return model_inputs
|
| 2027 |
+
|
| 2028 |
+
def _update_model_kwargs_for_generation(
|
| 2029 |
+
self,
|
| 2030 |
+
outputs: ModelOutput,
|
| 2031 |
+
model_kwargs: Dict[str, Any],
|
| 2032 |
+
is_encoder_decoder: bool = False,
|
| 2033 |
+
num_new_tokens: int = 1,
|
| 2034 |
+
) -> Dict[str, Any]:
|
| 2035 |
+
if model_kwargs["use_cache"] and "images" in model_kwargs:
|
| 2036 |
+
# After the first step, no long pass the images into forward since the images tokens
|
| 2037 |
+
# are already cached
|
| 2038 |
+
for k in ["images", "image_masks", "pooled_patches_idx"]:
|
| 2039 |
+
del model_kwargs[k]
|
| 2040 |
+
return super()._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder, num_new_tokens)
|
| 2041 |
+
|
| 2042 |
+
@staticmethod
|
| 2043 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 2044 |
+
attention_mask: torch.Tensor,
|
| 2045 |
+
sequence_length: int,
|
| 2046 |
+
target_length: int,
|
| 2047 |
+
dtype: torch.dtype,
|
| 2048 |
+
cache_position: torch.Tensor,
|
| 2049 |
+
batch_size: int,
|
| 2050 |
+
**kwargs,
|
| 2051 |
+
):
|
| 2052 |
+
"""
|
| 2053 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 2054 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 2055 |
+
|
| 2056 |
+
Args:
|
| 2057 |
+
attention_mask (`torch.Tensor`):
|
| 2058 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 2059 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 2060 |
+
sequence_length (`int`):
|
| 2061 |
+
The sequence length being processed.
|
| 2062 |
+
target_length (`int`):
|
| 2063 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 2064 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 2065 |
+
dtype (`torch.dtype`):
|
| 2066 |
+
The dtype to use for the 4D attention mask.
|
| 2067 |
+
cache_position (`torch.Tensor`):
|
| 2068 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 2069 |
+
batch_size (`torch.Tensor`):
|
| 2070 |
+
Batch size.
|
| 2071 |
+
"""
|
| 2072 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 2073 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 2074 |
+
causal_mask = attention_mask
|
| 2075 |
+
else:
|
| 2076 |
+
min_dtype = torch.finfo(dtype).min
|
| 2077 |
+
causal_mask = torch.full(
|
| 2078 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
| 2079 |
+
)
|
| 2080 |
+
if sequence_length != 1:
|
| 2081 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 2082 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
| 2083 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 2084 |
+
if attention_mask is not None:
|
| 2085 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 2086 |
+
mask_length = attention_mask.shape[-1]
|
| 2087 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 2088 |
+
causal_mask.device
|
| 2089 |
+
)
|
| 2090 |
+
padding_mask = padding_mask == 0
|
| 2091 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 2092 |
+
padding_mask, min_dtype
|
| 2093 |
+
)
|
| 2094 |
+
|
| 2095 |
+
return causal_mask
|
| 2096 |
+
|
| 2097 |
+
|
| 2098 |
+
# Always register for multi-modal features
|
| 2099 |
+
AutoModelForImageTextToText.register(MolmoActConfig, MolmoActForActionReasoning)
|
| 2100 |
+
AutoModelForCausalLM.register(MolmoActLlmConfig, MolmoActForCausalLM)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_molmoact.MolmoActImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_molmoact.MolmoActProcessor"
|
| 5 |
+
},
|
| 6 |
+
"base_image_input_size": [
|
| 7 |
+
378,
|
| 8 |
+
378
|
| 9 |
+
],
|
| 10 |
+
"crop_mode": "overlap-and-resize-c2",
|
| 11 |
+
"do_convert_rgb": true,
|
| 12 |
+
"do_pad": true,
|
| 13 |
+
"image_patch_size": 14,
|
| 14 |
+
"image_pooling_h": 2,
|
| 15 |
+
"image_pooling_w": 2,
|
| 16 |
+
"image_processor_type": "MolmoActImageProcessor",
|
| 17 |
+
"max_crops": 8,
|
| 18 |
+
"max_multi_image_crops": 8,
|
| 19 |
+
"normalize_mode": "siglip",
|
| 20 |
+
"overlap_margins": [
|
| 21 |
+
4,
|
| 22 |
+
4
|
| 23 |
+
],
|
| 24 |
+
"pad_value": 0.0,
|
| 25 |
+
"processor_class": "MolmoActProcessor",
|
| 26 |
+
"resize_mode": "siglip"
|
| 27 |
+
}
|
processing_molmoact.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Processor class for MolmoAct.
|
| 3 |
+
"""
|
| 4 |
+
from typing import List, Optional, Union, Dict, Tuple
|
| 5 |
+
|
| 6 |
+
import PIL
|
| 7 |
+
from PIL import ImageFile, ImageOps
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
from typing import Unpack
|
| 11 |
+
except ImportError:
|
| 12 |
+
from typing_extensions import Unpack
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from transformers.image_utils import ImageInput
|
| 18 |
+
from transformers.processing_utils import (
|
| 19 |
+
ProcessingKwargs,
|
| 20 |
+
ProcessorMixin,
|
| 21 |
+
)
|
| 22 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 23 |
+
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
|
| 24 |
+
from transformers.utils import logging
|
| 25 |
+
|
| 26 |
+
from transformers import AutoTokenizer
|
| 27 |
+
from .image_processing_molmoact import MolmoActImagesKwargs, MolmoActImageProcessor
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Special tokens, these should be present in any tokenizer we use since the preprocessor uses them
|
| 34 |
+
IMAGE_PATCH_TOKEN = f"<im_patch>" # Where to insert high-res tokens
|
| 35 |
+
IMAGE_LOW_RES_TOKEN = f"<im_low>" # Where to insert low-res tokens
|
| 36 |
+
IM_START_TOKEN = f"<im_start>"
|
| 37 |
+
IM_END_TOKEN = f"<im_end>"
|
| 38 |
+
IM_COL_TOKEN = f"<im_col>"
|
| 39 |
+
IMAGE_PROMPT = "<|image|>"
|
| 40 |
+
|
| 41 |
+
EXTRA_TOKENS = (IM_START_TOKEN, IM_END_TOKEN, IMAGE_PATCH_TOKEN,
|
| 42 |
+
IM_COL_TOKEN, IMAGE_PROMPT, IMAGE_LOW_RES_TOKEN)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
DEMO_STYLES = [
|
| 46 |
+
"point_count",
|
| 47 |
+
"pointing",
|
| 48 |
+
"cosyn_point",
|
| 49 |
+
"user_qa",
|
| 50 |
+
"long_caption",
|
| 51 |
+
"short_caption",
|
| 52 |
+
"video_long_caption",
|
| 53 |
+
"video_short_caption",
|
| 54 |
+
"correction_qa",
|
| 55 |
+
"demo",
|
| 56 |
+
"android_control",
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def setup_pil():
|
| 61 |
+
PIL.Image.MAX_IMAGE_PIXELS = None
|
| 62 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_special_token_ids(tokenizer: AutoTokenizer) -> Dict[str, int]:
|
| 66 |
+
ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
|
| 67 |
+
assert len(ids) == len(EXTRA_TOKENS)
|
| 68 |
+
return {k: i for k, i in zip(EXTRA_TOKENS, ids)}
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def load_image(image: Union[PIL.Image.Image, np.ndarray]) -> np.ndarray:
|
| 72 |
+
"""Load image"""
|
| 73 |
+
setup_pil()
|
| 74 |
+
if isinstance(image, PIL.Image.Image):
|
| 75 |
+
image = image.convert("RGB")
|
| 76 |
+
image = ImageOps.exif_transpose(image)
|
| 77 |
+
return np.array(image)
|
| 78 |
+
elif isinstance(image, np.ndarray):
|
| 79 |
+
assert len(image.shape) == 3, "Image should have 3 dimensions"
|
| 80 |
+
assert image.shape[2] == 3, "Image should have 3 channels"
|
| 81 |
+
assert image.dtype == np.uint8, "Image should have uint8 type"
|
| 82 |
+
return image
|
| 83 |
+
else:
|
| 84 |
+
raise ValueError("Image should be PIL.Image or np.ndarray")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class MolmoActProcessorKwargs(ProcessingKwargs, total=False):
|
| 88 |
+
"""MolmoAct processor kwargs"""
|
| 89 |
+
images_kwargs: MolmoActImagesKwargs
|
| 90 |
+
_defaults = {
|
| 91 |
+
"text_kwargs": {
|
| 92 |
+
"padding": False,
|
| 93 |
+
},
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class MolmoActProcessor(ProcessorMixin):
|
| 98 |
+
attributes = ["image_processor", "tokenizer"]
|
| 99 |
+
optional_attributes = [
|
| 100 |
+
"chat_template",
|
| 101 |
+
"prompt_templates",
|
| 102 |
+
"message_format",
|
| 103 |
+
"system_prompt",
|
| 104 |
+
"style",
|
| 105 |
+
"always_start_with_space",
|
| 106 |
+
"default_inference_len",
|
| 107 |
+
"use_col_tokens",
|
| 108 |
+
"image_padding_mask",
|
| 109 |
+
]
|
| 110 |
+
image_processor_class = "AutoImageProcessor"
|
| 111 |
+
tokenizer_class = "AutoTokenizer"
|
| 112 |
+
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
image_processor: MolmoActImageProcessor = None,
|
| 116 |
+
tokenizer: AutoTokenizer = None,
|
| 117 |
+
chat_template: Optional[str] = None,
|
| 118 |
+
prompt_templates: Optional[str] = "uber_model",
|
| 119 |
+
message_format: Optional[str] = "role",
|
| 120 |
+
system_prompt: Optional[str] = "demo_or_style",
|
| 121 |
+
style: Optional[str] = "demo",
|
| 122 |
+
always_start_with_space: Optional[bool] = False,
|
| 123 |
+
default_inference_len: Optional[int] = 65,
|
| 124 |
+
use_col_tokens: Optional[bool] = True,
|
| 125 |
+
image_padding_mask: bool = False,
|
| 126 |
+
**kwargs
|
| 127 |
+
) -> None:
|
| 128 |
+
if tokenizer.padding_side != "left":
|
| 129 |
+
logger.warning(f"Tokenizer {tokenizer.name_or_path} is not left-padded, padding side will be set to left")
|
| 130 |
+
tokenizer.padding_side = "left" # type: ignore
|
| 131 |
+
super().__init__(
|
| 132 |
+
image_processor,
|
| 133 |
+
tokenizer,
|
| 134 |
+
chat_template=chat_template,
|
| 135 |
+
prompt_templates=prompt_templates,
|
| 136 |
+
message_format=message_format,
|
| 137 |
+
system_prompt=system_prompt,
|
| 138 |
+
style=style,
|
| 139 |
+
always_start_with_space=always_start_with_space,
|
| 140 |
+
default_inference_len=default_inference_len,
|
| 141 |
+
use_col_tokens=use_col_tokens,
|
| 142 |
+
image_padding_mask=image_padding_mask,
|
| 143 |
+
)
|
| 144 |
+
self._special_tokens = None
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def special_token_ids(self):
|
| 148 |
+
if self._special_tokens is None:
|
| 149 |
+
self._special_tokens = get_special_token_ids(self.tokenizer)
|
| 150 |
+
return self._special_tokens
|
| 151 |
+
|
| 152 |
+
def get_user_prompt(self, text: TextInput) -> str:
|
| 153 |
+
"""Get user prompt"""
|
| 154 |
+
if self.prompt_templates == "none":
|
| 155 |
+
return ""
|
| 156 |
+
elif self.prompt_templates == "uber_model":
|
| 157 |
+
return text
|
| 158 |
+
else:
|
| 159 |
+
raise NotImplementedError(self.prompt_templates)
|
| 160 |
+
|
| 161 |
+
def get_prefix(self) -> str:
|
| 162 |
+
"""Get prefix"""
|
| 163 |
+
if self.system_prompt == "style_and_length": # captioner
|
| 164 |
+
assert self.style in ["long_caption"]
|
| 165 |
+
style = self.style
|
| 166 |
+
n = None if self.default_inference_len is None else str(self.default_inference_len)
|
| 167 |
+
if n is not None and len(n) > 0: # allow empty string to signal unconditioned
|
| 168 |
+
prefix = style + " " + n + ":"
|
| 169 |
+
else:
|
| 170 |
+
prefix = style + " :"
|
| 171 |
+
elif self.system_prompt == "demo_or_style": # demo model
|
| 172 |
+
if self.style in DEMO_STYLES:
|
| 173 |
+
prefix = ""
|
| 174 |
+
else:
|
| 175 |
+
prefix = self.style + ":"
|
| 176 |
+
else:
|
| 177 |
+
raise NotImplementedError(self.system_prompt)
|
| 178 |
+
return prefix
|
| 179 |
+
|
| 180 |
+
def format_prompt(self, prompt: str) -> str:
|
| 181 |
+
"""Format prompt"""
|
| 182 |
+
if self.message_format == "none":
|
| 183 |
+
pass
|
| 184 |
+
elif self.message_format == "role":
|
| 185 |
+
prompt = "User: " + prompt + " Assistant:"
|
| 186 |
+
else:
|
| 187 |
+
raise NotImplementedError(self.message_format)
|
| 188 |
+
|
| 189 |
+
if self.always_start_with_space:
|
| 190 |
+
prompt = " " + prompt
|
| 191 |
+
|
| 192 |
+
return prompt
|
| 193 |
+
|
| 194 |
+
def get_prompt(self, text: TextInput) -> str:
|
| 195 |
+
prompt = self.get_user_prompt(text)
|
| 196 |
+
if self.system_prompt and self.system_prompt != "none":
|
| 197 |
+
prefix = self.get_prefix()
|
| 198 |
+
if len(prefix) > 0 and len(prompt) > 0:
|
| 199 |
+
prompt = prefix + " " + prompt
|
| 200 |
+
elif len(prefix) > 0:
|
| 201 |
+
prompt = prefix
|
| 202 |
+
prompt = self.format_prompt(prompt)
|
| 203 |
+
return prompt
|
| 204 |
+
|
| 205 |
+
def get_image_tokens(self, image_grid: np.ndarray):
|
| 206 |
+
joint = []
|
| 207 |
+
for h, w in image_grid:
|
| 208 |
+
per_row = np.full(w, IMAGE_PATCH_TOKEN)
|
| 209 |
+
if self.use_col_tokens:
|
| 210 |
+
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0)
|
| 211 |
+
extra_tokens = np.tile(per_row, [h])
|
| 212 |
+
joint += [
|
| 213 |
+
[IM_START_TOKEN],
|
| 214 |
+
extra_tokens,
|
| 215 |
+
[IM_END_TOKEN],
|
| 216 |
+
]
|
| 217 |
+
return np.concatenate(joint)
|
| 218 |
+
|
| 219 |
+
def insert_bos_numpy(
|
| 220 |
+
self,
|
| 221 |
+
input_ids: np.ndarray,
|
| 222 |
+
attention_mask: np.ndarray,
|
| 223 |
+
bos_token_id: int,
|
| 224 |
+
pad_token_id: int,
|
| 225 |
+
):
|
| 226 |
+
"""
|
| 227 |
+
Args:
|
| 228 |
+
input_ids: [B, S] array with left padding
|
| 229 |
+
attention_mask: [B, S] array (0 for pad, 1 for valid)
|
| 230 |
+
bos_token_id: int
|
| 231 |
+
pad_token_id: int
|
| 232 |
+
Returns:
|
| 233 |
+
input_ids_out: [B, S] or [B, S+1] array with bos inserted if needed
|
| 234 |
+
attention_mask_out: same shape as input_ids_out
|
| 235 |
+
"""
|
| 236 |
+
|
| 237 |
+
need_to_expand = len(input_ids.shape) == 1
|
| 238 |
+
if need_to_expand:
|
| 239 |
+
input_ids = input_ids[None, :]
|
| 240 |
+
attention_mask = attention_mask[None, :]
|
| 241 |
+
|
| 242 |
+
B, S = input_ids.shape
|
| 243 |
+
|
| 244 |
+
# Handle zero-length sequence
|
| 245 |
+
if S == 0:
|
| 246 |
+
new_input_ids = np.full((B, 1), bos_token_id, dtype=input_ids.dtype)
|
| 247 |
+
new_attention_mask = np.ones((B, 1), dtype=attention_mask.dtype)
|
| 248 |
+
if need_to_expand:
|
| 249 |
+
new_input_ids = new_input_ids[0]
|
| 250 |
+
new_attention_mask = new_attention_mask[0]
|
| 251 |
+
return new_input_ids, new_attention_mask
|
| 252 |
+
|
| 253 |
+
first_valid_index = (attention_mask == 1).argmax(axis=-1) # [B]
|
| 254 |
+
bos_already_present = np.all(input_ids[np.arange(B), first_valid_index] == bos_token_id)
|
| 255 |
+
|
| 256 |
+
if bos_already_present:
|
| 257 |
+
if need_to_expand:
|
| 258 |
+
input_ids = input_ids[0]
|
| 259 |
+
attention_mask = attention_mask[0]
|
| 260 |
+
return input_ids, attention_mask
|
| 261 |
+
else:
|
| 262 |
+
new_input_ids = np.full((B, S+1), pad_token_id, dtype=input_ids.dtype)
|
| 263 |
+
new_attention_mask = np.zeros((B, S+1), dtype=attention_mask.dtype)
|
| 264 |
+
|
| 265 |
+
src_idx = np.tile(np.arange(S), (B, 1)) # [B, S]
|
| 266 |
+
valid_mask = src_idx >= first_valid_index[:, None] # [B, S]
|
| 267 |
+
tgt_idx = src_idx + 1 # shit right
|
| 268 |
+
batch_idx = np.tile(np.arange(B)[:, None], (1, S)) # [B, S]
|
| 269 |
+
|
| 270 |
+
# flatten valid_positions
|
| 271 |
+
flat_vals = input_ids[valid_mask]
|
| 272 |
+
flat_batch = batch_idx[valid_mask]
|
| 273 |
+
flat_tgt = tgt_idx[valid_mask]
|
| 274 |
+
|
| 275 |
+
new_input_ids[flat_batch, flat_tgt] = flat_vals
|
| 276 |
+
new_attention_mask[flat_batch, flat_tgt] = 1
|
| 277 |
+
|
| 278 |
+
insert_pos = first_valid_index
|
| 279 |
+
new_input_ids[np.arange(B), insert_pos] = bos_token_id
|
| 280 |
+
new_attention_mask[np.arange(B), insert_pos] = 1
|
| 281 |
+
|
| 282 |
+
if need_to_expand:
|
| 283 |
+
new_input_ids = new_input_ids[0]
|
| 284 |
+
new_attention_mask = new_attention_mask[0]
|
| 285 |
+
|
| 286 |
+
return new_input_ids, new_attention_mask
|
| 287 |
+
|
| 288 |
+
def insert_bos_torch(
|
| 289 |
+
self,
|
| 290 |
+
input_ids: torch.Tensor,
|
| 291 |
+
attention_mask: torch.Tensor,
|
| 292 |
+
bos_token_id: int,
|
| 293 |
+
pad_token_id: int,
|
| 294 |
+
):
|
| 295 |
+
"""
|
| 296 |
+
Args:
|
| 297 |
+
input_ids: [B, S] tensor with left padding
|
| 298 |
+
attention_mask: [B, S] tensor (0 for pad, 1 for valid)
|
| 299 |
+
bos_token_id: int
|
| 300 |
+
pad_token_id: int
|
| 301 |
+
Returns:
|
| 302 |
+
input_ids_out: [B, S] or [B, S+1] tensor with bos inserted if needed
|
| 303 |
+
attention_mask_out: same shape as input_ids_out
|
| 304 |
+
"""
|
| 305 |
+
|
| 306 |
+
B, S = input_ids.shape
|
| 307 |
+
device = input_ids.device
|
| 308 |
+
|
| 309 |
+
# Handle zero-length sequence
|
| 310 |
+
if S == 0:
|
| 311 |
+
new_input_ids = torch.full((B, 1), bos_token_id, dtype=input_ids.dtype, device=device)
|
| 312 |
+
new_attention_mask = torch.ones((B, 1), dtype=attention_mask.dtype, device=device)
|
| 313 |
+
return new_input_ids, new_attention_mask
|
| 314 |
+
|
| 315 |
+
first_valid_index = (attention_mask == 1).long().argmax(dim=-1) # [B]
|
| 316 |
+
bos_already_present = (input_ids[torch.arange(B), first_valid_index] == bos_token_id).all()
|
| 317 |
+
|
| 318 |
+
if bos_already_present:
|
| 319 |
+
return input_ids, attention_mask
|
| 320 |
+
else:
|
| 321 |
+
new_input_ids = torch.full((B, S+1), pad_token_id, dtype=input_ids.dtype, device=device)
|
| 322 |
+
new_attention_mask = torch.zeros((B, S+1), dtype=attention_mask.dtype, device=device)
|
| 323 |
+
|
| 324 |
+
src_idx = torch.arange(S, device=device).expand(B, S) # [B, S]
|
| 325 |
+
valid_mask = src_idx >= first_valid_index.unsqueeze(1) # [B, S]
|
| 326 |
+
tgt_idx = src_idx + 1 # shift right
|
| 327 |
+
batch_idx = torch.arange(B, device=device).unsqueeze(1).expand_as(src_idx)
|
| 328 |
+
|
| 329 |
+
flat_vals = input_ids[valid_mask]
|
| 330 |
+
flat_batch = batch_idx[valid_mask]
|
| 331 |
+
flat_tgt = tgt_idx[valid_mask]
|
| 332 |
+
|
| 333 |
+
new_input_ids[flat_batch, flat_tgt] = flat_vals
|
| 334 |
+
new_attention_mask[flat_batch, flat_tgt] = 1
|
| 335 |
+
|
| 336 |
+
insert_pos = first_valid_index
|
| 337 |
+
batch_indices = torch.arange(B, device=device)
|
| 338 |
+
new_input_ids[batch_indices, insert_pos] = bos_token_id
|
| 339 |
+
new_attention_mask[batch_indices, insert_pos] = 1
|
| 340 |
+
|
| 341 |
+
return new_input_ids, new_attention_mask
|
| 342 |
+
|
| 343 |
+
def __call__(
|
| 344 |
+
self,
|
| 345 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 346 |
+
images: Union[ImageInput, List[ImageInput]] = None,
|
| 347 |
+
apply_chat_template: bool = False,
|
| 348 |
+
**kwargs: Unpack[MolmoActProcessorKwargs],
|
| 349 |
+
) -> BatchFeature:
|
| 350 |
+
if images is None and text is None:
|
| 351 |
+
raise ValueError("You have to specify at least one of `images` or `text`.")
|
| 352 |
+
|
| 353 |
+
output_kwargs = self._merge_kwargs(
|
| 354 |
+
MolmoActProcessorKwargs,
|
| 355 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 356 |
+
**kwargs,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
if isinstance(text, (list, tuple)) and isinstance(images, (list, tuple)):
|
| 360 |
+
if len(text) != len(images):
|
| 361 |
+
raise ValueError("You have to provide the same number of text and images")
|
| 362 |
+
if len(text) > 1 and not output_kwargs["text_kwargs"].get("padding", False):
|
| 363 |
+
raise ValueError("You have to specify padding when you have multiple text inputs")
|
| 364 |
+
|
| 365 |
+
if isinstance(text, str):
|
| 366 |
+
text = [text]
|
| 367 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 368 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
| 369 |
+
|
| 370 |
+
if images is not None:
|
| 371 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
| 372 |
+
else:
|
| 373 |
+
image_inputs = {}
|
| 374 |
+
|
| 375 |
+
if apply_chat_template:
|
| 376 |
+
text = [self.get_prompt(t) for t in text]
|
| 377 |
+
|
| 378 |
+
prompt_strings = text
|
| 379 |
+
if image_inputs.get("images", None) is not None:
|
| 380 |
+
|
| 381 |
+
prompt_strings = []
|
| 382 |
+
for idx, image_grids in enumerate(image_inputs.pop("image_grids")):
|
| 383 |
+
if isinstance(image_grids, torch.Tensor):
|
| 384 |
+
image_grids = image_grids.cpu().numpy()
|
| 385 |
+
if isinstance(images, (list, tuple)) and isinstance(images[idx], (list, tuple)):
|
| 386 |
+
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)]
|
| 387 |
+
offset = 2 if len(images[idx]) < len(image_grids) else 1 # whether to use both low and high res images
|
| 388 |
+
all_image_strings = []
|
| 389 |
+
for i in range(0, len(image_grids), offset):
|
| 390 |
+
image_grids_i = image_grids[i:i+offset]
|
| 391 |
+
image_tokens = self.get_image_tokens(image_grids_i)
|
| 392 |
+
img_ix = i // offset
|
| 393 |
+
all_image_strings.append(f"Image {img_ix + 1}" + "".join(image_tokens))
|
| 394 |
+
image_string = "".join(all_image_strings)
|
| 395 |
+
prompt_strings.append(image_string + text[idx])
|
| 396 |
+
else:
|
| 397 |
+
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)]
|
| 398 |
+
assert len(image_grids) in [1, 2], "Only one or two crops are supported for single image inputs"
|
| 399 |
+
image_tokens = self.get_image_tokens(image_grids)
|
| 400 |
+
image_string = "".join(image_tokens)
|
| 401 |
+
prompt_strings.append(image_string + text[idx])
|
| 402 |
+
|
| 403 |
+
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
| 404 |
+
|
| 405 |
+
input_ids = text_inputs["input_ids"]
|
| 406 |
+
attention_mask = text_inputs["attention_mask"]
|
| 407 |
+
|
| 408 |
+
is_list = isinstance(input_ids, (list, tuple))
|
| 409 |
+
if is_list:
|
| 410 |
+
input_ids = np.array(input_ids)
|
| 411 |
+
attention_mask = np.array(attention_mask)
|
| 412 |
+
|
| 413 |
+
use_numpy = isinstance(attention_mask, np.ndarray)
|
| 414 |
+
|
| 415 |
+
if use_numpy and np.issubdtype(input_ids.dtype, np.floating):
|
| 416 |
+
input_ids = input_ids.astype(np.int64)
|
| 417 |
+
attention_mask = attention_mask.astype(np.int64)
|
| 418 |
+
elif not use_numpy and torch.is_floating_point(input_ids):
|
| 419 |
+
input_ids = input_ids.to(torch.int64)
|
| 420 |
+
attention_mask = attention_mask.to(torch.int64)
|
| 421 |
+
|
| 422 |
+
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
| 423 |
+
if use_numpy:
|
| 424 |
+
input_ids, attention_mask = self.insert_bos_numpy(
|
| 425 |
+
input_ids, attention_mask, bos, self.tokenizer.pad_token_id
|
| 426 |
+
)
|
| 427 |
+
else:
|
| 428 |
+
input_ids, attention_mask = self.insert_bos_torch(
|
| 429 |
+
input_ids, attention_mask, bos, self.tokenizer.pad_token_id
|
| 430 |
+
)
|
| 431 |
+
if is_list:
|
| 432 |
+
input_ids = input_ids.tolist() # type: ignore
|
| 433 |
+
attention_mask = attention_mask.tolist() # type: ignore
|
| 434 |
+
text_inputs["input_ids"] = input_ids
|
| 435 |
+
text_inputs["attention_mask"] = attention_mask
|
| 436 |
+
|
| 437 |
+
if kwargs.get("device", None) is not None:
|
| 438 |
+
text_inputs = text_inputs.to(device=kwargs.get("device"), non_blocking=True)
|
| 439 |
+
# there is no bos token in Qwen tokenizer
|
| 440 |
+
return BatchFeature(
|
| 441 |
+
data={**text_inputs, **image_inputs}, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
def batch_decode(self, *args, **kwargs):
|
| 445 |
+
"""
|
| 446 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 447 |
+
refer to the docstring of this method for more information.
|
| 448 |
+
"""
|
| 449 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 450 |
+
|
| 451 |
+
def decode(self, *args, **kwargs):
|
| 452 |
+
"""
|
| 453 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 454 |
+
the docstring of this method for more information.
|
| 455 |
+
"""
|
| 456 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 457 |
+
|
| 458 |
+
@property
|
| 459 |
+
def model_input_names(self):
|
| 460 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 461 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 462 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
MolmoActProcessor.register_for_auto_class()
|
processor_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"always_start_with_space": false,
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoProcessor": "processing_molmoact.MolmoActProcessor"
|
| 5 |
+
},
|
| 6 |
+
"default_inference_len": 65,
|
| 7 |
+
"image_padding_mask": false,
|
| 8 |
+
"message_format": "role",
|
| 9 |
+
"processor_class": "MolmoActProcessor",
|
| 10 |
+
"prompt_templates": "uber_model",
|
| 11 |
+
"style": "demo",
|
| 12 |
+
"system_prompt": "demo_or_style",
|
| 13 |
+
"use_col_tokens": true
|
| 14 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "|<EXTRA_TOKENS_0>|",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"content": "|<EXTRA_TOKENS_1>|",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"content": "|<EXTRA_TOKENS_2>|",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"content": "|<EXTRA_TOKENS_3>|",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"content": "|<EXTRA_TOKENS_4>|",
|
| 33 |
+
"lstrip": false,
|
| 34 |
+
"normalized": false,
|
| 35 |
+
"rstrip": false,
|
| 36 |
+
"single_word": false
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"content": "|<EXTRA_TOKENS_5>|",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"content": "|<EXTRA_TOKENS_6>|",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"content": "|<EXTRA_TOKENS_7>|",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"content": "|<EXTRA_TOKENS_8>|",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"content": "|<EXTRA_TOKENS_9>|",
|
| 68 |
+
"lstrip": false,
|
| 69 |
+
"normalized": false,
|
| 70 |
+
"rstrip": false,
|
| 71 |
+
"single_word": false
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"content": "|<EXTRA_TOKENS_10>|",
|
| 75 |
+
"lstrip": false,
|
| 76 |
+
"normalized": false,
|
| 77 |
+
"rstrip": false,
|
| 78 |
+
"single_word": false
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"content": "|<EXTRA_TOKENS_11>|",
|
| 82 |
+
"lstrip": false,
|
| 83 |
+
"normalized": false,
|
| 84 |
+
"rstrip": false,
|
| 85 |
+
"single_word": false
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"content": "|<EXTRA_TOKENS_12>|",
|
| 89 |
+
"lstrip": false,
|
| 90 |
+
"normalized": false,
|
| 91 |
+
"rstrip": false,
|
| 92 |
+
"single_word": false
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"content": "|<EXTRA_TOKENS_13>|",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"content": "|<EXTRA_TOKENS_14>|",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"content": "|<EXTRA_TOKENS_15>|",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"content": "|<EXTRA_TOKENS_16>|",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"content": "|<EXTRA_TOKENS_17>|",
|
| 124 |
+
"lstrip": false,
|
| 125 |
+
"normalized": false,
|
| 126 |
+
"rstrip": false,
|
| 127 |
+
"single_word": false
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"content": "|<EXTRA_TOKENS_18>|",
|
| 131 |
+
"lstrip": false,
|
| 132 |
+
"normalized": false,
|
| 133 |
+
"rstrip": false,
|
| 134 |
+
"single_word": false
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"content": "|<EXTRA_TOKENS_19>|",
|
| 138 |
+
"lstrip": false,
|
| 139 |
+
"normalized": false,
|
| 140 |
+
"rstrip": false,
|
| 141 |
+
"single_word": false
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"content": "|<EXTRA_TOKENS_20>|",
|
| 145 |
+
"lstrip": false,
|
| 146 |
+
"normalized": false,
|
| 147 |
+
"rstrip": false,
|
| 148 |
+
"single_word": false
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"content": "|<EXTRA_TOKENS_21>|",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"content": "|<EXTRA_TOKENS_22>|",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"content": "|<EXTRA_TOKENS_23>|",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"content": "|<EXTRA_TOKENS_24>|",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"content": "|<EXTRA_TOKENS_25>|",
|
| 180 |
+
"lstrip": false,
|
| 181 |
+
"normalized": false,
|
| 182 |
+
"rstrip": false,
|
| 183 |
+
"single_word": false
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"content": "|<EXTRA_TOKENS_26>|",
|
| 187 |
+
"lstrip": false,
|
| 188 |
+
"normalized": false,
|
| 189 |
+
"rstrip": false,
|
| 190 |
+
"single_word": false
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"content": "|<EXTRA_TOKENS_27>|",
|
| 194 |
+
"lstrip": false,
|
| 195 |
+
"normalized": false,
|
| 196 |
+
"rstrip": false,
|
| 197 |
+
"single_word": false
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"content": "|<EXTRA_TOKENS_28>|",
|
| 201 |
+
"lstrip": false,
|
| 202 |
+
"normalized": false,
|
| 203 |
+
"rstrip": false,
|
| 204 |
+
"single_word": false
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"content": "|<EXTRA_TOKENS_29>|",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"content": "|<EXTRA_TOKENS_30>|",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"content": "|<EXTRA_TOKENS_31>|",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"content": "|<EXTRA_TOKENS_32>|",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false
|
| 233 |
+
},
|
| 234 |
+
{
|
| 235 |
+
"content": "|<EXTRA_TOKENS_33>|",
|
| 236 |
+
"lstrip": false,
|
| 237 |
+
"normalized": false,
|
| 238 |
+
"rstrip": false,
|
| 239 |
+
"single_word": false
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"content": "|<EXTRA_TOKENS_34>|",
|
| 243 |
+
"lstrip": false,
|
| 244 |
+
"normalized": false,
|
| 245 |
+
"rstrip": false,
|
| 246 |
+
"single_word": false
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"content": "|<EXTRA_TOKENS_35>|",
|
| 250 |
+
"lstrip": false,
|
| 251 |
+
"normalized": false,
|
| 252 |
+
"rstrip": false,
|
| 253 |
+
"single_word": false
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"content": "|<EXTRA_TOKENS_36>|",
|
| 257 |
+
"lstrip": false,
|
| 258 |
+
"normalized": false,
|
| 259 |
+
"rstrip": false,
|
| 260 |
+
"single_word": false
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"content": "|<EXTRA_TOKENS_37>|",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"content": "|<EXTRA_TOKENS_38>|",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"content": "|<EXTRA_TOKENS_39>|",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"content": "|<EXTRA_TOKENS_40>|",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"content": "|<EXTRA_TOKENS_41>|",
|
| 292 |
+
"lstrip": false,
|
| 293 |
+
"normalized": false,
|
| 294 |
+
"rstrip": false,
|
| 295 |
+
"single_word": false
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"content": "|<EXTRA_TOKENS_42>|",
|
| 299 |
+
"lstrip": false,
|
| 300 |
+
"normalized": false,
|
| 301 |
+
"rstrip": false,
|
| 302 |
+
"single_word": false
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"content": "|<EXTRA_TOKENS_43>|",
|
| 306 |
+
"lstrip": false,
|
| 307 |
+
"normalized": false,
|
| 308 |
+
"rstrip": false,
|
| 309 |
+
"single_word": false
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"content": "|<EXTRA_TOKENS_44>|",
|
| 313 |
+
"lstrip": false,
|
| 314 |
+
"normalized": false,
|
| 315 |
+
"rstrip": false,
|
| 316 |
+
"single_word": false
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"content": "|<EXTRA_TOKENS_45>|",
|
| 320 |
+
"lstrip": false,
|
| 321 |
+
"normalized": false,
|
| 322 |
+
"rstrip": false,
|
| 323 |
+
"single_word": false
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"content": "|<EXTRA_TOKENS_46>|",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"content": "|<EXTRA_TOKENS_47>|",
|
| 334 |
+
"lstrip": false,
|
| 335 |
+
"normalized": false,
|
| 336 |
+
"rstrip": false,
|
| 337 |
+
"single_word": false
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"content": "|<EXTRA_TOKENS_48>|",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"content": "|<EXTRA_TOKENS_49>|",
|
| 348 |
+
"lstrip": false,
|
| 349 |
+
"normalized": false,
|
| 350 |
+
"rstrip": false,
|
| 351 |
+
"single_word": false
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"content": "|<EXTRA_TOKENS_50>|",
|
| 355 |
+
"lstrip": false,
|
| 356 |
+
"normalized": false,
|
| 357 |
+
"rstrip": false,
|
| 358 |
+
"single_word": false
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"content": "|<EXTRA_TOKENS_51>|",
|
| 362 |
+
"lstrip": false,
|
| 363 |
+
"normalized": false,
|
| 364 |
+
"rstrip": false,
|
| 365 |
+
"single_word": false
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"content": "|<EXTRA_TOKENS_52>|",
|
| 369 |
+
"lstrip": false,
|
| 370 |
+
"normalized": false,
|
| 371 |
+
"rstrip": false,
|
| 372 |
+
"single_word": false
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"content": "|<EXTRA_TOKENS_53>|",
|
| 376 |
+
"lstrip": false,
|
| 377 |
+
"normalized": false,
|
| 378 |
+
"rstrip": false,
|
| 379 |
+
"single_word": false
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"content": "|<EXTRA_TOKENS_54>|",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"content": "|<EXTRA_TOKENS_55>|",
|
| 390 |
+
"lstrip": false,
|
| 391 |
+
"normalized": false,
|
| 392 |
+
"rstrip": false,
|
| 393 |
+
"single_word": false
|
| 394 |
+
},
|
| 395 |
+
{
|
| 396 |
+
"content": "|<EXTRA_TOKENS_56>|",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"content": "|<EXTRA_TOKENS_57>|",
|
| 404 |
+
"lstrip": false,
|
| 405 |
+
"normalized": false,
|
| 406 |
+
"rstrip": false,
|
| 407 |
+
"single_word": false
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"content": "|<EXTRA_TOKENS_58>|",
|
| 411 |
+
"lstrip": false,
|
| 412 |
+
"normalized": false,
|
| 413 |
+
"rstrip": false,
|
| 414 |
+
"single_word": false
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"content": "|<EXTRA_TOKENS_59>|",
|
| 418 |
+
"lstrip": false,
|
| 419 |
+
"normalized": false,
|
| 420 |
+
"rstrip": false,
|
| 421 |
+
"single_word": false
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"content": "|<EXTRA_TOKENS_60>|",
|
| 425 |
+
"lstrip": false,
|
| 426 |
+
"normalized": false,
|
| 427 |
+
"rstrip": false,
|
| 428 |
+
"single_word": false
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"content": "|<EXTRA_TOKENS_61>|",
|
| 432 |
+
"lstrip": false,
|
| 433 |
+
"normalized": false,
|
| 434 |
+
"rstrip": false,
|
| 435 |
+
"single_word": false
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"content": "|<EXTRA_TOKENS_62>|",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"content": "|<EXTRA_TOKENS_63>|",
|
| 446 |
+
"lstrip": false,
|
| 447 |
+
"normalized": false,
|
| 448 |
+
"rstrip": false,
|
| 449 |
+
"single_word": false
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"content": "|<EXTRA_TOKENS_64>|",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"content": "|<EXTRA_TOKENS_65>|",
|
| 460 |
+
"lstrip": false,
|
| 461 |
+
"normalized": false,
|
| 462 |
+
"rstrip": false,
|
| 463 |
+
"single_word": false
|
| 464 |
+
},
|
| 465 |
+
{
|
| 466 |
+
"content": "|<EXTRA_TOKENS_66>|",
|
| 467 |
+
"lstrip": false,
|
| 468 |
+
"normalized": false,
|
| 469 |
+
"rstrip": false,
|
| 470 |
+
"single_word": false
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"content": "|<EXTRA_TOKENS_67>|",
|
| 474 |
+
"lstrip": false,
|
| 475 |
+
"normalized": false,
|
| 476 |
+
"rstrip": false,
|
| 477 |
+
"single_word": false
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"content": "|<EXTRA_TOKENS_68>|",
|
| 481 |
+
"lstrip": false,
|
| 482 |
+
"normalized": false,
|
| 483 |
+
"rstrip": false,
|
| 484 |
+
"single_word": false
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"content": "|<EXTRA_TOKENS_69>|",
|
| 488 |
+
"lstrip": false,
|
| 489 |
+
"normalized": false,
|
| 490 |
+
"rstrip": false,
|
| 491 |
+
"single_word": false
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"content": "|<EXTRA_TOKENS_70>|",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"content": "|<EXTRA_TOKENS_71>|",
|
| 502 |
+
"lstrip": false,
|
| 503 |
+
"normalized": false,
|
| 504 |
+
"rstrip": false,
|
| 505 |
+
"single_word": false
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"content": "|<EXTRA_TOKENS_72>|",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"content": "|<EXTRA_TOKENS_73>|",
|
| 516 |
+
"lstrip": false,
|
| 517 |
+
"normalized": false,
|
| 518 |
+
"rstrip": false,
|
| 519 |
+
"single_word": false
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"content": "|<EXTRA_TOKENS_74>|",
|
| 523 |
+
"lstrip": false,
|
| 524 |
+
"normalized": false,
|
| 525 |
+
"rstrip": false,
|
| 526 |
+
"single_word": false
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"content": "|<EXTRA_TOKENS_75>|",
|
| 530 |
+
"lstrip": false,
|
| 531 |
+
"normalized": false,
|
| 532 |
+
"rstrip": false,
|
| 533 |
+
"single_word": false
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"content": "|<EXTRA_TOKENS_76>|",
|
| 537 |
+
"lstrip": false,
|
| 538 |
+
"normalized": false,
|
| 539 |
+
"rstrip": false,
|
| 540 |
+
"single_word": false
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"content": "|<EXTRA_TOKENS_77>|",
|
| 544 |
+
"lstrip": false,
|
| 545 |
+
"normalized": false,
|
| 546 |
+
"rstrip": false,
|
| 547 |
+
"single_word": false
|
| 548 |
+
},
|
| 549 |
+
{
|
| 550 |
+
"content": "|<EXTRA_TOKENS_78>|",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"content": "|<EXTRA_TOKENS_79>|",
|
| 558 |
+
"lstrip": false,
|
| 559 |
+
"normalized": false,
|
| 560 |
+
"rstrip": false,
|
| 561 |
+
"single_word": false
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"content": "|<EXTRA_TOKENS_80>|",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"content": "|<EXTRA_TOKENS_81>|",
|
| 572 |
+
"lstrip": false,
|
| 573 |
+
"normalized": false,
|
| 574 |
+
"rstrip": false,
|
| 575 |
+
"single_word": false
|
| 576 |
+
},
|
| 577 |
+
{
|
| 578 |
+
"content": "|<EXTRA_TOKENS_82>|",
|
| 579 |
+
"lstrip": false,
|
| 580 |
+
"normalized": false,
|
| 581 |
+
"rstrip": false,
|
| 582 |
+
"single_word": false
|
| 583 |
+
},
|
| 584 |
+
{
|
| 585 |
+
"content": "|<EXTRA_TOKENS_83>|",
|
| 586 |
+
"lstrip": false,
|
| 587 |
+
"normalized": false,
|
| 588 |
+
"rstrip": false,
|
| 589 |
+
"single_word": false
|
| 590 |
+
},
|
| 591 |
+
{
|
| 592 |
+
"content": "|<EXTRA_TOKENS_84>|",
|
| 593 |
+
"lstrip": false,
|
| 594 |
+
"normalized": false,
|
| 595 |
+
"rstrip": false,
|
| 596 |
+
"single_word": false
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"content": "|<EXTRA_TOKENS_85>|",
|
| 600 |
+
"lstrip": false,
|
| 601 |
+
"normalized": false,
|
| 602 |
+
"rstrip": false,
|
| 603 |
+
"single_word": false
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
"content": "|<EXTRA_TOKENS_86>|",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"content": "|<EXTRA_TOKENS_87>|",
|
| 614 |
+
"lstrip": false,
|
| 615 |
+
"normalized": false,
|
| 616 |
+
"rstrip": false,
|
| 617 |
+
"single_word": false
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"content": "|<EXTRA_TOKENS_88>|",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false
|
| 625 |
+
},
|
| 626 |
+
{
|
| 627 |
+
"content": "|<EXTRA_TOKENS_89>|",
|
| 628 |
+
"lstrip": false,
|
| 629 |
+
"normalized": false,
|
| 630 |
+
"rstrip": false,
|
| 631 |
+
"single_word": false
|
| 632 |
+
},
|
| 633 |
+
{
|
| 634 |
+
"content": "|<EXTRA_TOKENS_90>|",
|
| 635 |
+
"lstrip": false,
|
| 636 |
+
"normalized": false,
|
| 637 |
+
"rstrip": false,
|
| 638 |
+
"single_word": false
|
| 639 |
+
},
|
| 640 |
+
{
|
| 641 |
+
"content": "|<EXTRA_TOKENS_91>|",
|
| 642 |
+
"lstrip": false,
|
| 643 |
+
"normalized": false,
|
| 644 |
+
"rstrip": false,
|
| 645 |
+
"single_word": false
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"content": "|<EXTRA_TOKENS_92>|",
|
| 649 |
+
"lstrip": false,
|
| 650 |
+
"normalized": false,
|
| 651 |
+
"rstrip": false,
|
| 652 |
+
"single_word": false
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"content": "|<EXTRA_TOKENS_93>|",
|
| 656 |
+
"lstrip": false,
|
| 657 |
+
"normalized": false,
|
| 658 |
+
"rstrip": false,
|
| 659 |
+
"single_word": false
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"content": "|<EXTRA_TOKENS_94>|",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"content": "|<EXTRA_TOKENS_95>|",
|
| 670 |
+
"lstrip": false,
|
| 671 |
+
"normalized": false,
|
| 672 |
+
"rstrip": false,
|
| 673 |
+
"single_word": false
|
| 674 |
+
},
|
| 675 |
+
{
|
| 676 |
+
"content": "|<EXTRA_TOKENS_96>|",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false
|
| 681 |
+
},
|
| 682 |
+
{
|
| 683 |
+
"content": "|<EXTRA_TOKENS_97>|",
|
| 684 |
+
"lstrip": false,
|
| 685 |
+
"normalized": false,
|
| 686 |
+
"rstrip": false,
|
| 687 |
+
"single_word": false
|
| 688 |
+
},
|
| 689 |
+
{
|
| 690 |
+
"content": "|<EXTRA_TOKENS_98>|",
|
| 691 |
+
"lstrip": false,
|
| 692 |
+
"normalized": false,
|
| 693 |
+
"rstrip": false,
|
| 694 |
+
"single_word": false
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"content": "|<EXTRA_TOKENS_99>|",
|
| 698 |
+
"lstrip": false,
|
| 699 |
+
"normalized": false,
|
| 700 |
+
"rstrip": false,
|
| 701 |
+
"single_word": false
|
| 702 |
+
},
|
| 703 |
+
{
|
| 704 |
+
"content": "|<EXTRA_TOKENS_100>|",
|
| 705 |
+
"lstrip": false,
|
| 706 |
+
"normalized": false,
|
| 707 |
+
"rstrip": false,
|
| 708 |
+
"single_word": false
|
| 709 |
+
},
|
| 710 |
+
{
|
| 711 |
+
"content": "|<EXTRA_TOKENS_101>|",
|
| 712 |
+
"lstrip": false,
|
| 713 |
+
"normalized": false,
|
| 714 |
+
"rstrip": false,
|
| 715 |
+
"single_word": false
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"content": "|<EXTRA_TOKENS_102>|",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"content": "|<EXTRA_TOKENS_103>|",
|
| 726 |
+
"lstrip": false,
|
| 727 |
+
"normalized": false,
|
| 728 |
+
"rstrip": false,
|
| 729 |
+
"single_word": false
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"content": "|<EXTRA_TOKENS_104>|",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"content": "|<EXTRA_TOKENS_105>|",
|
| 740 |
+
"lstrip": false,
|
| 741 |
+
"normalized": false,
|
| 742 |
+
"rstrip": false,
|
| 743 |
+
"single_word": false
|
| 744 |
+
},
|
| 745 |
+
{
|
| 746 |
+
"content": "|<EXTRA_TOKENS_106>|",
|
| 747 |
+
"lstrip": false,
|
| 748 |
+
"normalized": false,
|
| 749 |
+
"rstrip": false,
|
| 750 |
+
"single_word": false
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"content": "|<EXTRA_TOKENS_107>|",
|
| 754 |
+
"lstrip": false,
|
| 755 |
+
"normalized": false,
|
| 756 |
+
"rstrip": false,
|
| 757 |
+
"single_word": false
|
| 758 |
+
},
|
| 759 |
+
{
|
| 760 |
+
"content": "|<EXTRA_TOKENS_108>|",
|
| 761 |
+
"lstrip": false,
|
| 762 |
+
"normalized": false,
|
| 763 |
+
"rstrip": false,
|
| 764 |
+
"single_word": false
|
| 765 |
+
},
|
| 766 |
+
{
|
| 767 |
+
"content": "|<EXTRA_TOKENS_109>|",
|
| 768 |
+
"lstrip": false,
|
| 769 |
+
"normalized": false,
|
| 770 |
+
"rstrip": false,
|
| 771 |
+
"single_word": false
|
| 772 |
+
},
|
| 773 |
+
{
|
| 774 |
+
"content": "|<EXTRA_TOKENS_110>|",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"content": "|<EXTRA_TOKENS_111>|",
|
| 782 |
+
"lstrip": false,
|
| 783 |
+
"normalized": false,
|
| 784 |
+
"rstrip": false,
|
| 785 |
+
"single_word": false
|
| 786 |
+
},
|
| 787 |
+
{
|
| 788 |
+
"content": "|<EXTRA_TOKENS_112>|",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"content": "|<EXTRA_TOKENS_113>|",
|
| 796 |
+
"lstrip": false,
|
| 797 |
+
"normalized": false,
|
| 798 |
+
"rstrip": false,
|
| 799 |
+
"single_word": false
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"content": "|<EXTRA_TOKENS_114>|",
|
| 803 |
+
"lstrip": false,
|
| 804 |
+
"normalized": false,
|
| 805 |
+
"rstrip": false,
|
| 806 |
+
"single_word": false
|
| 807 |
+
},
|
| 808 |
+
{
|
| 809 |
+
"content": "|<EXTRA_TOKENS_115>|",
|
| 810 |
+
"lstrip": false,
|
| 811 |
+
"normalized": false,
|
| 812 |
+
"rstrip": false,
|
| 813 |
+
"single_word": false
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"content": "|<EXTRA_TOKENS_116>|",
|
| 817 |
+
"lstrip": false,
|
| 818 |
+
"normalized": false,
|
| 819 |
+
"rstrip": false,
|
| 820 |
+
"single_word": false
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"content": "|<EXTRA_TOKENS_117>|",
|
| 824 |
+
"lstrip": false,
|
| 825 |
+
"normalized": false,
|
| 826 |
+
"rstrip": false,
|
| 827 |
+
"single_word": false
|
| 828 |
+
},
|
| 829 |
+
{
|
| 830 |
+
"content": "|<EXTRA_TOKENS_118>|",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"content": "|<EXTRA_TOKENS_119>|",
|
| 838 |
+
"lstrip": false,
|
| 839 |
+
"normalized": false,
|
| 840 |
+
"rstrip": false,
|
| 841 |
+
"single_word": false
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"content": "|<EXTRA_TOKENS_120>|",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false
|
| 849 |
+
},
|
| 850 |
+
{
|
| 851 |
+
"content": "|<EXTRA_TOKENS_121>|",
|
| 852 |
+
"lstrip": false,
|
| 853 |
+
"normalized": false,
|
| 854 |
+
"rstrip": false,
|
| 855 |
+
"single_word": false
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"content": "|<EXTRA_TOKENS_122>|",
|
| 859 |
+
"lstrip": false,
|
| 860 |
+
"normalized": false,
|
| 861 |
+
"rstrip": false,
|
| 862 |
+
"single_word": false
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"content": "|<EXTRA_TOKENS_123>|",
|
| 866 |
+
"lstrip": false,
|
| 867 |
+
"normalized": false,
|
| 868 |
+
"rstrip": false,
|
| 869 |
+
"single_word": false
|
| 870 |
+
},
|
| 871 |
+
{
|
| 872 |
+
"content": "|<EXTRA_TOKENS_124>|",
|
| 873 |
+
"lstrip": false,
|
| 874 |
+
"normalized": false,
|
| 875 |
+
"rstrip": false,
|
| 876 |
+
"single_word": false
|
| 877 |
+
},
|
| 878 |
+
{
|
| 879 |
+
"content": "|<EXTRA_TOKENS_125>|",
|
| 880 |
+
"lstrip": false,
|
| 881 |
+
"normalized": false,
|
| 882 |
+
"rstrip": false,
|
| 883 |
+
"single_word": false
|
| 884 |
+
},
|
| 885 |
+
{
|
| 886 |
+
"content": "|<EXTRA_TOKENS_126>|",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"content": "|<EXTRA_TOKENS_127>|",
|
| 894 |
+
"lstrip": false,
|
| 895 |
+
"normalized": false,
|
| 896 |
+
"rstrip": false,
|
| 897 |
+
"single_word": false
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"content": "|<EXTRA_TOKENS_128>|",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false
|
| 905 |
+
},
|
| 906 |
+
{
|
| 907 |
+
"content": "|<EXTRA_TOKENS_129>|",
|
| 908 |
+
"lstrip": false,
|
| 909 |
+
"normalized": false,
|
| 910 |
+
"rstrip": false,
|
| 911 |
+
"single_word": false
|
| 912 |
+
},
|
| 913 |
+
{
|
| 914 |
+
"content": "|<EXTRA_TOKENS_130>|",
|
| 915 |
+
"lstrip": false,
|
| 916 |
+
"normalized": false,
|
| 917 |
+
"rstrip": false,
|
| 918 |
+
"single_word": false
|
| 919 |
+
},
|
| 920 |
+
{
|
| 921 |
+
"content": "|<EXTRA_TOKENS_131>|",
|
| 922 |
+
"lstrip": false,
|
| 923 |
+
"normalized": false,
|
| 924 |
+
"rstrip": false,
|
| 925 |
+
"single_word": false
|
| 926 |
+
},
|
| 927 |
+
{
|
| 928 |
+
"content": "|<EXTRA_TOKENS_132>|",
|
| 929 |
+
"lstrip": false,
|
| 930 |
+
"normalized": false,
|
| 931 |
+
"rstrip": false,
|
| 932 |
+
"single_word": false
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"content": "|<EXTRA_TOKENS_133>|",
|
| 936 |
+
"lstrip": false,
|
| 937 |
+
"normalized": false,
|
| 938 |
+
"rstrip": false,
|
| 939 |
+
"single_word": false
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"content": "|<EXTRA_TOKENS_134>|",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"content": "|<EXTRA_TOKENS_135>|",
|
| 950 |
+
"lstrip": false,
|
| 951 |
+
"normalized": false,
|
| 952 |
+
"rstrip": false,
|
| 953 |
+
"single_word": false
|
| 954 |
+
},
|
| 955 |
+
{
|
| 956 |
+
"content": "|<EXTRA_TOKENS_136>|",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false
|
| 961 |
+
},
|
| 962 |
+
{
|
| 963 |
+
"content": "|<EXTRA_TOKENS_137>|",
|
| 964 |
+
"lstrip": false,
|
| 965 |
+
"normalized": false,
|
| 966 |
+
"rstrip": false,
|
| 967 |
+
"single_word": false
|
| 968 |
+
},
|
| 969 |
+
{
|
| 970 |
+
"content": "|<EXTRA_TOKENS_138>|",
|
| 971 |
+
"lstrip": false,
|
| 972 |
+
"normalized": false,
|
| 973 |
+
"rstrip": false,
|
| 974 |
+
"single_word": false
|
| 975 |
+
},
|
| 976 |
+
{
|
| 977 |
+
"content": "|<EXTRA_TOKENS_139>|",
|
| 978 |
+
"lstrip": false,
|
| 979 |
+
"normalized": false,
|
| 980 |
+
"rstrip": false,
|
| 981 |
+
"single_word": false
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"content": "|<EXTRA_TOKENS_140>|",
|
| 985 |
+
"lstrip": false,
|
| 986 |
+
"normalized": false,
|
| 987 |
+
"rstrip": false,
|
| 988 |
+
"single_word": false
|
| 989 |
+
},
|
| 990 |
+
{
|
| 991 |
+
"content": "|<EXTRA_TOKENS_141>|",
|
| 992 |
+
"lstrip": false,
|
| 993 |
+
"normalized": false,
|
| 994 |
+
"rstrip": false,
|
| 995 |
+
"single_word": false
|
| 996 |
+
},
|
| 997 |
+
{
|
| 998 |
+
"content": "|<EXTRA_TOKENS_142>|",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"content": "|<EXTRA_TOKENS_143>|",
|
| 1006 |
+
"lstrip": false,
|
| 1007 |
+
"normalized": false,
|
| 1008 |
+
"rstrip": false,
|
| 1009 |
+
"single_word": false
|
| 1010 |
+
},
|
| 1011 |
+
{
|
| 1012 |
+
"content": "|<EXTRA_TOKENS_144>|",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false
|
| 1017 |
+
},
|
| 1018 |
+
{
|
| 1019 |
+
"content": "|<EXTRA_TOKENS_145>|",
|
| 1020 |
+
"lstrip": false,
|
| 1021 |
+
"normalized": false,
|
| 1022 |
+
"rstrip": false,
|
| 1023 |
+
"single_word": false
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"content": "|<EXTRA_TOKENS_146>|",
|
| 1027 |
+
"lstrip": false,
|
| 1028 |
+
"normalized": false,
|
| 1029 |
+
"rstrip": false,
|
| 1030 |
+
"single_word": false
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"content": "|<EXTRA_TOKENS_147>|",
|
| 1034 |
+
"lstrip": false,
|
| 1035 |
+
"normalized": false,
|
| 1036 |
+
"rstrip": false,
|
| 1037 |
+
"single_word": false
|
| 1038 |
+
},
|
| 1039 |
+
{
|
| 1040 |
+
"content": "|<EXTRA_TOKENS_148>|",
|
| 1041 |
+
"lstrip": false,
|
| 1042 |
+
"normalized": false,
|
| 1043 |
+
"rstrip": false,
|
| 1044 |
+
"single_word": false
|
| 1045 |
+
},
|
| 1046 |
+
{
|
| 1047 |
+
"content": "|<EXTRA_TOKENS_149>|",
|
| 1048 |
+
"lstrip": false,
|
| 1049 |
+
"normalized": false,
|
| 1050 |
+
"rstrip": false,
|
| 1051 |
+
"single_word": false
|
| 1052 |
+
},
|
| 1053 |
+
{
|
| 1054 |
+
"content": "|<EXTRA_TOKENS_150>|",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"content": "|<EXTRA_TOKENS_151>|",
|
| 1062 |
+
"lstrip": false,
|
| 1063 |
+
"normalized": false,
|
| 1064 |
+
"rstrip": false,
|
| 1065 |
+
"single_word": false
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"content": "|<EXTRA_TOKENS_152>|",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false
|
| 1073 |
+
},
|
| 1074 |
+
{
|
| 1075 |
+
"content": "|<EXTRA_TOKENS_153>|",
|
| 1076 |
+
"lstrip": false,
|
| 1077 |
+
"normalized": false,
|
| 1078 |
+
"rstrip": false,
|
| 1079 |
+
"single_word": false
|
| 1080 |
+
},
|
| 1081 |
+
{
|
| 1082 |
+
"content": "|<EXTRA_TOKENS_154>|",
|
| 1083 |
+
"lstrip": false,
|
| 1084 |
+
"normalized": false,
|
| 1085 |
+
"rstrip": false,
|
| 1086 |
+
"single_word": false
|
| 1087 |
+
},
|
| 1088 |
+
{
|
| 1089 |
+
"content": "|<EXTRA_TOKENS_155>|",
|
| 1090 |
+
"lstrip": false,
|
| 1091 |
+
"normalized": false,
|
| 1092 |
+
"rstrip": false,
|
| 1093 |
+
"single_word": false
|
| 1094 |
+
},
|
| 1095 |
+
{
|
| 1096 |
+
"content": "|<EXTRA_TOKENS_156>|",
|
| 1097 |
+
"lstrip": false,
|
| 1098 |
+
"normalized": false,
|
| 1099 |
+
"rstrip": false,
|
| 1100 |
+
"single_word": false
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"content": "|<EXTRA_TOKENS_157>|",
|
| 1104 |
+
"lstrip": false,
|
| 1105 |
+
"normalized": false,
|
| 1106 |
+
"rstrip": false,
|
| 1107 |
+
"single_word": false
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"content": "|<EXTRA_TOKENS_158>|",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"content": "|<EXTRA_TOKENS_159>|",
|
| 1118 |
+
"lstrip": false,
|
| 1119 |
+
"normalized": false,
|
| 1120 |
+
"rstrip": false,
|
| 1121 |
+
"single_word": false
|
| 1122 |
+
},
|
| 1123 |
+
{
|
| 1124 |
+
"content": "|<EXTRA_TOKENS_160>|",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false
|
| 1129 |
+
},
|
| 1130 |
+
{
|
| 1131 |
+
"content": "|<EXTRA_TOKENS_161>|",
|
| 1132 |
+
"lstrip": false,
|
| 1133 |
+
"normalized": false,
|
| 1134 |
+
"rstrip": false,
|
| 1135 |
+
"single_word": false
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
"content": "|<EXTRA_TOKENS_162>|",
|
| 1139 |
+
"lstrip": false,
|
| 1140 |
+
"normalized": false,
|
| 1141 |
+
"rstrip": false,
|
| 1142 |
+
"single_word": false
|
| 1143 |
+
},
|
| 1144 |
+
{
|
| 1145 |
+
"content": "|<EXTRA_TOKENS_163>|",
|
| 1146 |
+
"lstrip": false,
|
| 1147 |
+
"normalized": false,
|
| 1148 |
+
"rstrip": false,
|
| 1149 |
+
"single_word": false
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"content": "|<EXTRA_TOKENS_164>|",
|
| 1153 |
+
"lstrip": false,
|
| 1154 |
+
"normalized": false,
|
| 1155 |
+
"rstrip": false,
|
| 1156 |
+
"single_word": false
|
| 1157 |
+
},
|
| 1158 |
+
{
|
| 1159 |
+
"content": "|<EXTRA_TOKENS_165>|",
|
| 1160 |
+
"lstrip": false,
|
| 1161 |
+
"normalized": false,
|
| 1162 |
+
"rstrip": false,
|
| 1163 |
+
"single_word": false
|
| 1164 |
+
},
|
| 1165 |
+
{
|
| 1166 |
+
"content": "|<EXTRA_TOKENS_166>|",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"content": "|<EXTRA_TOKENS_167>|",
|
| 1174 |
+
"lstrip": false,
|
| 1175 |
+
"normalized": false,
|
| 1176 |
+
"rstrip": false,
|
| 1177 |
+
"single_word": false
|
| 1178 |
+
},
|
| 1179 |
+
{
|
| 1180 |
+
"content": "|<EXTRA_TOKENS_168>|",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false
|
| 1185 |
+
},
|
| 1186 |
+
{
|
| 1187 |
+
"content": "|<EXTRA_TOKENS_169>|",
|
| 1188 |
+
"lstrip": false,
|
| 1189 |
+
"normalized": false,
|
| 1190 |
+
"rstrip": false,
|
| 1191 |
+
"single_word": false
|
| 1192 |
+
},
|
| 1193 |
+
{
|
| 1194 |
+
"content": "|<EXTRA_TOKENS_170>|",
|
| 1195 |
+
"lstrip": false,
|
| 1196 |
+
"normalized": false,
|
| 1197 |
+
"rstrip": false,
|
| 1198 |
+
"single_word": false
|
| 1199 |
+
},
|
| 1200 |
+
{
|
| 1201 |
+
"content": "|<EXTRA_TOKENS_171>|",
|
| 1202 |
+
"lstrip": false,
|
| 1203 |
+
"normalized": false,
|
| 1204 |
+
"rstrip": false,
|
| 1205 |
+
"single_word": false
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"content": "|<EXTRA_TOKENS_172>|",
|
| 1209 |
+
"lstrip": false,
|
| 1210 |
+
"normalized": false,
|
| 1211 |
+
"rstrip": false,
|
| 1212 |
+
"single_word": false
|
| 1213 |
+
},
|
| 1214 |
+
{
|
| 1215 |
+
"content": "|<EXTRA_TOKENS_173>|",
|
| 1216 |
+
"lstrip": false,
|
| 1217 |
+
"normalized": false,
|
| 1218 |
+
"rstrip": false,
|
| 1219 |
+
"single_word": false
|
| 1220 |
+
},
|
| 1221 |
+
{
|
| 1222 |
+
"content": "|<EXTRA_TOKENS_174>|",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"content": "|<EXTRA_TOKENS_175>|",
|
| 1230 |
+
"lstrip": false,
|
| 1231 |
+
"normalized": false,
|
| 1232 |
+
"rstrip": false,
|
| 1233 |
+
"single_word": false
|
| 1234 |
+
},
|
| 1235 |
+
{
|
| 1236 |
+
"content": "|<EXTRA_TOKENS_176>|",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false
|
| 1241 |
+
},
|
| 1242 |
+
{
|
| 1243 |
+
"content": "|<EXTRA_TOKENS_177>|",
|
| 1244 |
+
"lstrip": false,
|
| 1245 |
+
"normalized": false,
|
| 1246 |
+
"rstrip": false,
|
| 1247 |
+
"single_word": false
|
| 1248 |
+
},
|
| 1249 |
+
{
|
| 1250 |
+
"content": "|<EXTRA_TOKENS_178>|",
|
| 1251 |
+
"lstrip": false,
|
| 1252 |
+
"normalized": false,
|
| 1253 |
+
"rstrip": false,
|
| 1254 |
+
"single_word": false
|
| 1255 |
+
},
|
| 1256 |
+
{
|
| 1257 |
+
"content": "|<EXTRA_TOKENS_179>|",
|
| 1258 |
+
"lstrip": false,
|
| 1259 |
+
"normalized": false,
|
| 1260 |
+
"rstrip": false,
|
| 1261 |
+
"single_word": false
|
| 1262 |
+
},
|
| 1263 |
+
{
|
| 1264 |
+
"content": "|<EXTRA_TOKENS_180>|",
|
| 1265 |
+
"lstrip": false,
|
| 1266 |
+
"normalized": false,
|
| 1267 |
+
"rstrip": false,
|
| 1268 |
+
"single_word": false
|
| 1269 |
+
},
|
| 1270 |
+
{
|
| 1271 |
+
"content": "|<EXTRA_TOKENS_181>|",
|
| 1272 |
+
"lstrip": false,
|
| 1273 |
+
"normalized": false,
|
| 1274 |
+
"rstrip": false,
|
| 1275 |
+
"single_word": false
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"content": "|<EXTRA_TOKENS_182>|",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false
|
| 1283 |
+
},
|
| 1284 |
+
{
|
| 1285 |
+
"content": "|<EXTRA_TOKENS_183>|",
|
| 1286 |
+
"lstrip": false,
|
| 1287 |
+
"normalized": false,
|
| 1288 |
+
"rstrip": false,
|
| 1289 |
+
"single_word": false
|
| 1290 |
+
},
|
| 1291 |
+
{
|
| 1292 |
+
"content": "|<EXTRA_TOKENS_184>|",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"content": "|<EXTRA_TOKENS_185>|",
|
| 1300 |
+
"lstrip": false,
|
| 1301 |
+
"normalized": false,
|
| 1302 |
+
"rstrip": false,
|
| 1303 |
+
"single_word": false
|
| 1304 |
+
},
|
| 1305 |
+
{
|
| 1306 |
+
"content": "|<EXTRA_TOKENS_186>|",
|
| 1307 |
+
"lstrip": false,
|
| 1308 |
+
"normalized": false,
|
| 1309 |
+
"rstrip": false,
|
| 1310 |
+
"single_word": false
|
| 1311 |
+
},
|
| 1312 |
+
{
|
| 1313 |
+
"content": "|<EXTRA_TOKENS_187>|",
|
| 1314 |
+
"lstrip": false,
|
| 1315 |
+
"normalized": false,
|
| 1316 |
+
"rstrip": false,
|
| 1317 |
+
"single_word": false
|
| 1318 |
+
},
|
| 1319 |
+
{
|
| 1320 |
+
"content": "|<EXTRA_TOKENS_188>|",
|
| 1321 |
+
"lstrip": false,
|
| 1322 |
+
"normalized": false,
|
| 1323 |
+
"rstrip": false,
|
| 1324 |
+
"single_word": false
|
| 1325 |
+
},
|
| 1326 |
+
{
|
| 1327 |
+
"content": "|<EXTRA_TOKENS_189>|",
|
| 1328 |
+
"lstrip": false,
|
| 1329 |
+
"normalized": false,
|
| 1330 |
+
"rstrip": false,
|
| 1331 |
+
"single_word": false
|
| 1332 |
+
},
|
| 1333 |
+
{
|
| 1334 |
+
"content": "|<EXTRA_TOKENS_190>|",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"content": "|<EXTRA_TOKENS_191>|",
|
| 1342 |
+
"lstrip": false,
|
| 1343 |
+
"normalized": false,
|
| 1344 |
+
"rstrip": false,
|
| 1345 |
+
"single_word": false
|
| 1346 |
+
},
|
| 1347 |
+
{
|
| 1348 |
+
"content": "|<EXTRA_TOKENS_192>|",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false
|
| 1353 |
+
},
|
| 1354 |
+
{
|
| 1355 |
+
"content": "|<EXTRA_TOKENS_193>|",
|
| 1356 |
+
"lstrip": false,
|
| 1357 |
+
"normalized": false,
|
| 1358 |
+
"rstrip": false,
|
| 1359 |
+
"single_word": false
|
| 1360 |
+
},
|
| 1361 |
+
{
|
| 1362 |
+
"content": "|<EXTRA_TOKENS_194>|",
|
| 1363 |
+
"lstrip": false,
|
| 1364 |
+
"normalized": false,
|
| 1365 |
+
"rstrip": false,
|
| 1366 |
+
"single_word": false
|
| 1367 |
+
},
|
| 1368 |
+
{
|
| 1369 |
+
"content": "|<EXTRA_TOKENS_195>|",
|
| 1370 |
+
"lstrip": false,
|
| 1371 |
+
"normalized": false,
|
| 1372 |
+
"rstrip": false,
|
| 1373 |
+
"single_word": false
|
| 1374 |
+
},
|
| 1375 |
+
{
|
| 1376 |
+
"content": "|<EXTRA_TOKENS_196>|",
|
| 1377 |
+
"lstrip": false,
|
| 1378 |
+
"normalized": false,
|
| 1379 |
+
"rstrip": false,
|
| 1380 |
+
"single_word": false
|
| 1381 |
+
},
|
| 1382 |
+
{
|
| 1383 |
+
"content": "|<EXTRA_TOKENS_197>|",
|
| 1384 |
+
"lstrip": false,
|
| 1385 |
+
"normalized": false,
|
| 1386 |
+
"rstrip": false,
|
| 1387 |
+
"single_word": false
|
| 1388 |
+
},
|
| 1389 |
+
{
|
| 1390 |
+
"content": "|<EXTRA_TOKENS_198>|",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false
|
| 1395 |
+
},
|
| 1396 |
+
{
|
| 1397 |
+
"content": "|<EXTRA_TOKENS_199>|",
|
| 1398 |
+
"lstrip": false,
|
| 1399 |
+
"normalized": false,
|
| 1400 |
+
"rstrip": false,
|
| 1401 |
+
"single_word": false
|
| 1402 |
+
},
|
| 1403 |
+
{
|
| 1404 |
+
"content": "|<EXTRA_TOKENS_200>|",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false
|
| 1409 |
+
},
|
| 1410 |
+
{
|
| 1411 |
+
"content": "|<EXTRA_TOKENS_201>|",
|
| 1412 |
+
"lstrip": false,
|
| 1413 |
+
"normalized": false,
|
| 1414 |
+
"rstrip": false,
|
| 1415 |
+
"single_word": false
|
| 1416 |
+
},
|
| 1417 |
+
{
|
| 1418 |
+
"content": "|<EXTRA_TOKENS_202>|",
|
| 1419 |
+
"lstrip": false,
|
| 1420 |
+
"normalized": false,
|
| 1421 |
+
"rstrip": false,
|
| 1422 |
+
"single_word": false
|
| 1423 |
+
},
|
| 1424 |
+
{
|
| 1425 |
+
"content": "|<EXTRA_TOKENS_203>|",
|
| 1426 |
+
"lstrip": false,
|
| 1427 |
+
"normalized": false,
|
| 1428 |
+
"rstrip": false,
|
| 1429 |
+
"single_word": false
|
| 1430 |
+
},
|
| 1431 |
+
{
|
| 1432 |
+
"content": "|<EXTRA_TOKENS_204>|",
|
| 1433 |
+
"lstrip": false,
|
| 1434 |
+
"normalized": false,
|
| 1435 |
+
"rstrip": false,
|
| 1436 |
+
"single_word": false
|
| 1437 |
+
},
|
| 1438 |
+
{
|
| 1439 |
+
"content": "|<EXTRA_TOKENS_205>|",
|
| 1440 |
+
"lstrip": false,
|
| 1441 |
+
"normalized": false,
|
| 1442 |
+
"rstrip": false,
|
| 1443 |
+
"single_word": false
|
| 1444 |
+
},
|
| 1445 |
+
{
|
| 1446 |
+
"content": "|<EXTRA_TOKENS_206>|",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false
|
| 1451 |
+
},
|
| 1452 |
+
{
|
| 1453 |
+
"content": "|<EXTRA_TOKENS_207>|",
|
| 1454 |
+
"lstrip": false,
|
| 1455 |
+
"normalized": false,
|
| 1456 |
+
"rstrip": false,
|
| 1457 |
+
"single_word": false
|
| 1458 |
+
},
|
| 1459 |
+
{
|
| 1460 |
+
"content": "|<EXTRA_TOKENS_208>|",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false
|
| 1465 |
+
},
|
| 1466 |
+
{
|
| 1467 |
+
"content": "|<EXTRA_TOKENS_209>|",
|
| 1468 |
+
"lstrip": false,
|
| 1469 |
+
"normalized": false,
|
| 1470 |
+
"rstrip": false,
|
| 1471 |
+
"single_word": false
|
| 1472 |
+
},
|
| 1473 |
+
{
|
| 1474 |
+
"content": "|<EXTRA_TOKENS_210>|",
|
| 1475 |
+
"lstrip": false,
|
| 1476 |
+
"normalized": false,
|
| 1477 |
+
"rstrip": false,
|
| 1478 |
+
"single_word": false
|
| 1479 |
+
},
|
| 1480 |
+
{
|
| 1481 |
+
"content": "|<EXTRA_TOKENS_211>|",
|
| 1482 |
+
"lstrip": false,
|
| 1483 |
+
"normalized": false,
|
| 1484 |
+
"rstrip": false,
|
| 1485 |
+
"single_word": false
|
| 1486 |
+
},
|
| 1487 |
+
{
|
| 1488 |
+
"content": "|<EXTRA_TOKENS_212>|",
|
| 1489 |
+
"lstrip": false,
|
| 1490 |
+
"normalized": false,
|
| 1491 |
+
"rstrip": false,
|
| 1492 |
+
"single_word": false
|
| 1493 |
+
},
|
| 1494 |
+
{
|
| 1495 |
+
"content": "|<EXTRA_TOKENS_213>|",
|
| 1496 |
+
"lstrip": false,
|
| 1497 |
+
"normalized": false,
|
| 1498 |
+
"rstrip": false,
|
| 1499 |
+
"single_word": false
|
| 1500 |
+
},
|
| 1501 |
+
{
|
| 1502 |
+
"content": "|<EXTRA_TOKENS_214>|",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false
|
| 1507 |
+
},
|
| 1508 |
+
{
|
| 1509 |
+
"content": "|<EXTRA_TOKENS_215>|",
|
| 1510 |
+
"lstrip": false,
|
| 1511 |
+
"normalized": false,
|
| 1512 |
+
"rstrip": false,
|
| 1513 |
+
"single_word": false
|
| 1514 |
+
},
|
| 1515 |
+
{
|
| 1516 |
+
"content": "|<EXTRA_TOKENS_216>|",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false
|
| 1521 |
+
},
|
| 1522 |
+
{
|
| 1523 |
+
"content": "|<EXTRA_TOKENS_217>|",
|
| 1524 |
+
"lstrip": false,
|
| 1525 |
+
"normalized": false,
|
| 1526 |
+
"rstrip": false,
|
| 1527 |
+
"single_word": false
|
| 1528 |
+
},
|
| 1529 |
+
{
|
| 1530 |
+
"content": "|<EXTRA_TOKENS_218>|",
|
| 1531 |
+
"lstrip": false,
|
| 1532 |
+
"normalized": false,
|
| 1533 |
+
"rstrip": false,
|
| 1534 |
+
"single_word": false
|
| 1535 |
+
},
|
| 1536 |
+
{
|
| 1537 |
+
"content": "|<EXTRA_TOKENS_219>|",
|
| 1538 |
+
"lstrip": false,
|
| 1539 |
+
"normalized": false,
|
| 1540 |
+
"rstrip": false,
|
| 1541 |
+
"single_word": false
|
| 1542 |
+
},
|
| 1543 |
+
{
|
| 1544 |
+
"content": "|<EXTRA_TOKENS_220>|",
|
| 1545 |
+
"lstrip": false,
|
| 1546 |
+
"normalized": false,
|
| 1547 |
+
"rstrip": false,
|
| 1548 |
+
"single_word": false
|
| 1549 |
+
},
|
| 1550 |
+
{
|
| 1551 |
+
"content": "|<EXTRA_TOKENS_221>|",
|
| 1552 |
+
"lstrip": false,
|
| 1553 |
+
"normalized": false,
|
| 1554 |
+
"rstrip": false,
|
| 1555 |
+
"single_word": false
|
| 1556 |
+
},
|
| 1557 |
+
{
|
| 1558 |
+
"content": "|<EXTRA_TOKENS_222>|",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false
|
| 1563 |
+
},
|
| 1564 |
+
{
|
| 1565 |
+
"content": "|<EXTRA_TOKENS_223>|",
|
| 1566 |
+
"lstrip": false,
|
| 1567 |
+
"normalized": false,
|
| 1568 |
+
"rstrip": false,
|
| 1569 |
+
"single_word": false
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"content": "|<EXTRA_TOKENS_224>|",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false
|
| 1577 |
+
},
|
| 1578 |
+
{
|
| 1579 |
+
"content": "|<EXTRA_TOKENS_225>|",
|
| 1580 |
+
"lstrip": false,
|
| 1581 |
+
"normalized": false,
|
| 1582 |
+
"rstrip": false,
|
| 1583 |
+
"single_word": false
|
| 1584 |
+
},
|
| 1585 |
+
{
|
| 1586 |
+
"content": "|<EXTRA_TOKENS_226>|",
|
| 1587 |
+
"lstrip": false,
|
| 1588 |
+
"normalized": false,
|
| 1589 |
+
"rstrip": false,
|
| 1590 |
+
"single_word": false
|
| 1591 |
+
},
|
| 1592 |
+
{
|
| 1593 |
+
"content": "|<EXTRA_TOKENS_227>|",
|
| 1594 |
+
"lstrip": false,
|
| 1595 |
+
"normalized": false,
|
| 1596 |
+
"rstrip": false,
|
| 1597 |
+
"single_word": false
|
| 1598 |
+
},
|
| 1599 |
+
{
|
| 1600 |
+
"content": "|<EXTRA_TOKENS_228>|",
|
| 1601 |
+
"lstrip": false,
|
| 1602 |
+
"normalized": false,
|
| 1603 |
+
"rstrip": false,
|
| 1604 |
+
"single_word": false
|
| 1605 |
+
},
|
| 1606 |
+
{
|
| 1607 |
+
"content": "|<EXTRA_TOKENS_229>|",
|
| 1608 |
+
"lstrip": false,
|
| 1609 |
+
"normalized": false,
|
| 1610 |
+
"rstrip": false,
|
| 1611 |
+
"single_word": false
|
| 1612 |
+
},
|
| 1613 |
+
{
|
| 1614 |
+
"content": "|<EXTRA_TOKENS_230>|",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false
|
| 1619 |
+
},
|
| 1620 |
+
{
|
| 1621 |
+
"content": "|<EXTRA_TOKENS_231>|",
|
| 1622 |
+
"lstrip": false,
|
| 1623 |
+
"normalized": false,
|
| 1624 |
+
"rstrip": false,
|
| 1625 |
+
"single_word": false
|
| 1626 |
+
},
|
| 1627 |
+
{
|
| 1628 |
+
"content": "|<EXTRA_TOKENS_232>|",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false
|
| 1633 |
+
},
|
| 1634 |
+
{
|
| 1635 |
+
"content": "|<EXTRA_TOKENS_233>|",
|
| 1636 |
+
"lstrip": false,
|
| 1637 |
+
"normalized": false,
|
| 1638 |
+
"rstrip": false,
|
| 1639 |
+
"single_word": false
|
| 1640 |
+
},
|
| 1641 |
+
{
|
| 1642 |
+
"content": "|<EXTRA_TOKENS_234>|",
|
| 1643 |
+
"lstrip": false,
|
| 1644 |
+
"normalized": false,
|
| 1645 |
+
"rstrip": false,
|
| 1646 |
+
"single_word": false
|
| 1647 |
+
},
|
| 1648 |
+
{
|
| 1649 |
+
"content": "|<EXTRA_TOKENS_235>|",
|
| 1650 |
+
"lstrip": false,
|
| 1651 |
+
"normalized": false,
|
| 1652 |
+
"rstrip": false,
|
| 1653 |
+
"single_word": false
|
| 1654 |
+
},
|
| 1655 |
+
{
|
| 1656 |
+
"content": "|<EXTRA_TOKENS_236>|",
|
| 1657 |
+
"lstrip": false,
|
| 1658 |
+
"normalized": false,
|
| 1659 |
+
"rstrip": false,
|
| 1660 |
+
"single_word": false
|
| 1661 |
+
},
|
| 1662 |
+
{
|
| 1663 |
+
"content": "|<EXTRA_TOKENS_237>|",
|
| 1664 |
+
"lstrip": false,
|
| 1665 |
+
"normalized": false,
|
| 1666 |
+
"rstrip": false,
|
| 1667 |
+
"single_word": false
|
| 1668 |
+
},
|
| 1669 |
+
{
|
| 1670 |
+
"content": "|<EXTRA_TOKENS_238>|",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false
|
| 1675 |
+
},
|
| 1676 |
+
{
|
| 1677 |
+
"content": "|<EXTRA_TOKENS_239>|",
|
| 1678 |
+
"lstrip": false,
|
| 1679 |
+
"normalized": false,
|
| 1680 |
+
"rstrip": false,
|
| 1681 |
+
"single_word": false
|
| 1682 |
+
},
|
| 1683 |
+
{
|
| 1684 |
+
"content": "|<EXTRA_TOKENS_240>|",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false
|
| 1689 |
+
},
|
| 1690 |
+
{
|
| 1691 |
+
"content": "|<EXTRA_TOKENS_241>|",
|
| 1692 |
+
"lstrip": false,
|
| 1693 |
+
"normalized": false,
|
| 1694 |
+
"rstrip": false,
|
| 1695 |
+
"single_word": false
|
| 1696 |
+
},
|
| 1697 |
+
{
|
| 1698 |
+
"content": "|<EXTRA_TOKENS_242>|",
|
| 1699 |
+
"lstrip": false,
|
| 1700 |
+
"normalized": false,
|
| 1701 |
+
"rstrip": false,
|
| 1702 |
+
"single_word": false
|
| 1703 |
+
},
|
| 1704 |
+
{
|
| 1705 |
+
"content": "|<EXTRA_TOKENS_243>|",
|
| 1706 |
+
"lstrip": false,
|
| 1707 |
+
"normalized": false,
|
| 1708 |
+
"rstrip": false,
|
| 1709 |
+
"single_word": false
|
| 1710 |
+
},
|
| 1711 |
+
{
|
| 1712 |
+
"content": "|<EXTRA_TOKENS_244>|",
|
| 1713 |
+
"lstrip": false,
|
| 1714 |
+
"normalized": false,
|
| 1715 |
+
"rstrip": false,
|
| 1716 |
+
"single_word": false
|
| 1717 |
+
},
|
| 1718 |
+
{
|
| 1719 |
+
"content": "|<EXTRA_TOKENS_245>|",
|
| 1720 |
+
"lstrip": false,
|
| 1721 |
+
"normalized": false,
|
| 1722 |
+
"rstrip": false,
|
| 1723 |
+
"single_word": false
|
| 1724 |
+
},
|
| 1725 |
+
{
|
| 1726 |
+
"content": "|<EXTRA_TOKENS_246>|",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false
|
| 1731 |
+
},
|
| 1732 |
+
{
|
| 1733 |
+
"content": "|<EXTRA_TOKENS_247>|",
|
| 1734 |
+
"lstrip": false,
|
| 1735 |
+
"normalized": false,
|
| 1736 |
+
"rstrip": false,
|
| 1737 |
+
"single_word": false
|
| 1738 |
+
},
|
| 1739 |
+
{
|
| 1740 |
+
"content": "|<EXTRA_TOKENS_248>|",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false
|
| 1745 |
+
},
|
| 1746 |
+
{
|
| 1747 |
+
"content": "|<EXTRA_TOKENS_249>|",
|
| 1748 |
+
"lstrip": false,
|
| 1749 |
+
"normalized": false,
|
| 1750 |
+
"rstrip": false,
|
| 1751 |
+
"single_word": false
|
| 1752 |
+
},
|
| 1753 |
+
{
|
| 1754 |
+
"content": "|<EXTRA_TOKENS_250>|",
|
| 1755 |
+
"lstrip": false,
|
| 1756 |
+
"normalized": false,
|
| 1757 |
+
"rstrip": false,
|
| 1758 |
+
"single_word": false
|
| 1759 |
+
},
|
| 1760 |
+
{
|
| 1761 |
+
"content": "|<EXTRA_TOKENS_251>|",
|
| 1762 |
+
"lstrip": false,
|
| 1763 |
+
"normalized": false,
|
| 1764 |
+
"rstrip": false,
|
| 1765 |
+
"single_word": false
|
| 1766 |
+
},
|
| 1767 |
+
{
|
| 1768 |
+
"content": "|<EXTRA_TOKENS_252>|",
|
| 1769 |
+
"lstrip": false,
|
| 1770 |
+
"normalized": false,
|
| 1771 |
+
"rstrip": false,
|
| 1772 |
+
"single_word": false
|
| 1773 |
+
},
|
| 1774 |
+
{
|
| 1775 |
+
"content": "|<EXTRA_TOKENS_253>|",
|
| 1776 |
+
"lstrip": false,
|
| 1777 |
+
"normalized": false,
|
| 1778 |
+
"rstrip": false,
|
| 1779 |
+
"single_word": false
|
| 1780 |
+
},
|
| 1781 |
+
{
|
| 1782 |
+
"content": "|<EXTRA_TOKENS_254>|",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false
|
| 1787 |
+
},
|
| 1788 |
+
{
|
| 1789 |
+
"content": "|<EXTRA_TOKENS_255>|",
|
| 1790 |
+
"lstrip": false,
|
| 1791 |
+
"normalized": false,
|
| 1792 |
+
"rstrip": false,
|
| 1793 |
+
"single_word": false
|
| 1794 |
+
},
|
| 1795 |
+
{
|
| 1796 |
+
"content": "|<EXTRA_TOKENS_256>|",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false
|
| 1801 |
+
},
|
| 1802 |
+
{
|
| 1803 |
+
"content": "|<EXTRA_TOKENS_257>|",
|
| 1804 |
+
"lstrip": false,
|
| 1805 |
+
"normalized": false,
|
| 1806 |
+
"rstrip": false,
|
| 1807 |
+
"single_word": false
|
| 1808 |
+
},
|
| 1809 |
+
{
|
| 1810 |
+
"content": "|<EXTRA_TOKENS_258>|",
|
| 1811 |
+
"lstrip": false,
|
| 1812 |
+
"normalized": false,
|
| 1813 |
+
"rstrip": false,
|
| 1814 |
+
"single_word": false
|
| 1815 |
+
},
|
| 1816 |
+
{
|
| 1817 |
+
"content": "|<EXTRA_TOKENS_259>|",
|
| 1818 |
+
"lstrip": false,
|
| 1819 |
+
"normalized": false,
|
| 1820 |
+
"rstrip": false,
|
| 1821 |
+
"single_word": false
|
| 1822 |
+
},
|
| 1823 |
+
{
|
| 1824 |
+
"content": "|<EXTRA_TOKENS_260>|",
|
| 1825 |
+
"lstrip": false,
|
| 1826 |
+
"normalized": false,
|
| 1827 |
+
"rstrip": false,
|
| 1828 |
+
"single_word": false
|
| 1829 |
+
},
|
| 1830 |
+
{
|
| 1831 |
+
"content": "|<EXTRA_TOKENS_261>|",
|
| 1832 |
+
"lstrip": false,
|
| 1833 |
+
"normalized": false,
|
| 1834 |
+
"rstrip": false,
|
| 1835 |
+
"single_word": false
|
| 1836 |
+
},
|
| 1837 |
+
{
|
| 1838 |
+
"content": "|<EXTRA_TOKENS_262>|",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false
|
| 1843 |
+
},
|
| 1844 |
+
{
|
| 1845 |
+
"content": "|<EXTRA_TOKENS_263>|",
|
| 1846 |
+
"lstrip": false,
|
| 1847 |
+
"normalized": false,
|
| 1848 |
+
"rstrip": false,
|
| 1849 |
+
"single_word": false
|
| 1850 |
+
},
|
| 1851 |
+
{
|
| 1852 |
+
"content": "|<EXTRA_TOKENS_264>|",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false
|
| 1857 |
+
},
|
| 1858 |
+
{
|
| 1859 |
+
"content": "|<EXTRA_TOKENS_265>|",
|
| 1860 |
+
"lstrip": false,
|
| 1861 |
+
"normalized": false,
|
| 1862 |
+
"rstrip": false,
|
| 1863 |
+
"single_word": false
|
| 1864 |
+
},
|
| 1865 |
+
{
|
| 1866 |
+
"content": "|<EXTRA_TOKENS_266>|",
|
| 1867 |
+
"lstrip": false,
|
| 1868 |
+
"normalized": false,
|
| 1869 |
+
"rstrip": false,
|
| 1870 |
+
"single_word": false
|
| 1871 |
+
},
|
| 1872 |
+
{
|
| 1873 |
+
"content": "|<EXTRA_TOKENS_267>|",
|
| 1874 |
+
"lstrip": false,
|
| 1875 |
+
"normalized": false,
|
| 1876 |
+
"rstrip": false,
|
| 1877 |
+
"single_word": false
|
| 1878 |
+
},
|
| 1879 |
+
{
|
| 1880 |
+
"content": "|<EXTRA_TOKENS_268>|",
|
| 1881 |
+
"lstrip": false,
|
| 1882 |
+
"normalized": false,
|
| 1883 |
+
"rstrip": false,
|
| 1884 |
+
"single_word": false
|
| 1885 |
+
},
|
| 1886 |
+
{
|
| 1887 |
+
"content": "<im_start>",
|
| 1888 |
+
"lstrip": false,
|
| 1889 |
+
"normalized": false,
|
| 1890 |
+
"rstrip": false,
|
| 1891 |
+
"single_word": false
|
| 1892 |
+
},
|
| 1893 |
+
{
|
| 1894 |
+
"content": "<im_end>",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false
|
| 1899 |
+
},
|
| 1900 |
+
{
|
| 1901 |
+
"content": "<im_patch>",
|
| 1902 |
+
"lstrip": false,
|
| 1903 |
+
"normalized": false,
|
| 1904 |
+
"rstrip": false,
|
| 1905 |
+
"single_word": false
|
| 1906 |
+
},
|
| 1907 |
+
{
|
| 1908 |
+
"content": "<im_col>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false
|
| 1913 |
+
},
|
| 1914 |
+
{
|
| 1915 |
+
"content": "<|image|>",
|
| 1916 |
+
"lstrip": false,
|
| 1917 |
+
"normalized": false,
|
| 1918 |
+
"rstrip": false,
|
| 1919 |
+
"single_word": false
|
| 1920 |
+
},
|
| 1921 |
+
{
|
| 1922 |
+
"content": "<im_low>",
|
| 1923 |
+
"lstrip": false,
|
| 1924 |
+
"normalized": false,
|
| 1925 |
+
"rstrip": false,
|
| 1926 |
+
"single_word": false
|
| 1927 |
+
}
|
| 1928 |
+
],
|
| 1929 |
+
"bos_token": "<|endoftext|>",
|
| 1930 |
+
"eos_token": {
|
| 1931 |
+
"content": "<|endoftext|>",
|
| 1932 |
+
"lstrip": false,
|
| 1933 |
+
"normalized": false,
|
| 1934 |
+
"rstrip": false,
|
| 1935 |
+
"single_word": false
|
| 1936 |
+
},
|
| 1937 |
+
"pad_token": {
|
| 1938 |
+
"content": "<|endoftext|>",
|
| 1939 |
+
"lstrip": false,
|
| 1940 |
+
"normalized": false,
|
| 1941 |
+
"rstrip": false,
|
| 1942 |
+
"single_word": false
|
| 1943 |
+
}
|
| 1944 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70522ad61c51fe8b137105665e222eea81d787e5603c75641b02ba5480628ad6
|
| 3 |
+
size 11500226
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,3713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<DEPTH_START>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": true,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "<DEPTH_END>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": true,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<DEPTH_0>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": true,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "<DEPTH_1>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": true,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"151669": {
|
| 214 |
+
"content": "<DEPTH_2>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": true,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"151670": {
|
| 222 |
+
"content": "<DEPTH_3>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": true,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"151671": {
|
| 230 |
+
"content": "<DEPTH_4>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": true,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"151672": {
|
| 238 |
+
"content": "<DEPTH_5>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": true,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"151673": {
|
| 246 |
+
"content": "<DEPTH_6>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": true,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"151674": {
|
| 254 |
+
"content": "<DEPTH_7>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": true,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"151675": {
|
| 262 |
+
"content": "<DEPTH_8>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": true,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"151676": {
|
| 270 |
+
"content": "<DEPTH_9>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": true,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"151677": {
|
| 278 |
+
"content": "<DEPTH_10>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": true,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"151678": {
|
| 286 |
+
"content": "<DEPTH_11>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": true,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"151679": {
|
| 294 |
+
"content": "<DEPTH_12>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": true,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"151680": {
|
| 302 |
+
"content": "<DEPTH_13>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": true,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"151681": {
|
| 310 |
+
"content": "<DEPTH_14>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": true,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"151682": {
|
| 318 |
+
"content": "<DEPTH_15>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": true,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"151683": {
|
| 326 |
+
"content": "<DEPTH_16>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": true,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"151684": {
|
| 334 |
+
"content": "<DEPTH_17>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": true,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"151685": {
|
| 342 |
+
"content": "<DEPTH_18>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": true,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"151686": {
|
| 350 |
+
"content": "<DEPTH_19>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": true,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"151687": {
|
| 358 |
+
"content": "<DEPTH_20>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": true,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"151688": {
|
| 366 |
+
"content": "<DEPTH_21>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": true,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"151689": {
|
| 374 |
+
"content": "<DEPTH_22>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": true,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"151690": {
|
| 382 |
+
"content": "<DEPTH_23>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": true,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"151691": {
|
| 390 |
+
"content": "<DEPTH_24>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": true,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"151692": {
|
| 398 |
+
"content": "<DEPTH_25>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": true,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"151693": {
|
| 406 |
+
"content": "<DEPTH_26>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": true,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"151694": {
|
| 414 |
+
"content": "<DEPTH_27>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": true,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"151695": {
|
| 422 |
+
"content": "<DEPTH_28>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": true,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"151696": {
|
| 430 |
+
"content": "<DEPTH_29>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": true,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"151697": {
|
| 438 |
+
"content": "<DEPTH_30>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": true,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"151698": {
|
| 446 |
+
"content": "<DEPTH_31>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": true,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"151699": {
|
| 454 |
+
"content": "<DEPTH_32>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": true,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"151700": {
|
| 462 |
+
"content": "<DEPTH_33>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": true,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"151701": {
|
| 470 |
+
"content": "<DEPTH_34>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": true,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"151702": {
|
| 478 |
+
"content": "<DEPTH_35>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": true,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"151703": {
|
| 486 |
+
"content": "<DEPTH_36>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": true,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"151704": {
|
| 494 |
+
"content": "<DEPTH_37>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": true,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"151705": {
|
| 502 |
+
"content": "<DEPTH_38>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": true,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"151706": {
|
| 510 |
+
"content": "<DEPTH_39>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": true,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"151707": {
|
| 518 |
+
"content": "<DEPTH_40>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": true,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"151708": {
|
| 526 |
+
"content": "<DEPTH_41>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": true,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"151709": {
|
| 534 |
+
"content": "<DEPTH_42>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": true,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"151710": {
|
| 542 |
+
"content": "<DEPTH_43>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": true,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"151711": {
|
| 550 |
+
"content": "<DEPTH_44>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": true,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"151712": {
|
| 558 |
+
"content": "<DEPTH_45>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": true,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"151713": {
|
| 566 |
+
"content": "<DEPTH_46>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": true,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"151714": {
|
| 574 |
+
"content": "<DEPTH_47>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": true,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"151715": {
|
| 582 |
+
"content": "<DEPTH_48>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": true,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"151716": {
|
| 590 |
+
"content": "<DEPTH_49>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": true,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"151717": {
|
| 598 |
+
"content": "<DEPTH_50>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": true,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"151718": {
|
| 606 |
+
"content": "<DEPTH_51>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": true,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"151719": {
|
| 614 |
+
"content": "<DEPTH_52>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": true,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"151720": {
|
| 622 |
+
"content": "<DEPTH_53>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": true,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"151721": {
|
| 630 |
+
"content": "<DEPTH_54>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": true,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"151722": {
|
| 638 |
+
"content": "<DEPTH_55>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": true,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"151723": {
|
| 646 |
+
"content": "<DEPTH_56>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": true,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"151724": {
|
| 654 |
+
"content": "<DEPTH_57>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": true,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"151725": {
|
| 662 |
+
"content": "<DEPTH_58>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": true,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"151726": {
|
| 670 |
+
"content": "<DEPTH_59>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": true,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"151727": {
|
| 678 |
+
"content": "<DEPTH_60>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": true,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"151728": {
|
| 686 |
+
"content": "<DEPTH_61>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": true,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"151729": {
|
| 694 |
+
"content": "<DEPTH_62>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": true,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"151730": {
|
| 702 |
+
"content": "<DEPTH_63>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": true,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"151731": {
|
| 710 |
+
"content": "<DEPTH_64>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": true,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"151732": {
|
| 718 |
+
"content": "<DEPTH_65>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": true,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"151733": {
|
| 726 |
+
"content": "<DEPTH_66>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": true,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"151734": {
|
| 734 |
+
"content": "<DEPTH_67>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": true,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"151735": {
|
| 742 |
+
"content": "<DEPTH_68>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": true,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"151736": {
|
| 750 |
+
"content": "<DEPTH_69>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": true,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"151737": {
|
| 758 |
+
"content": "<DEPTH_70>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": true,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"151738": {
|
| 766 |
+
"content": "<DEPTH_71>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": true,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"151739": {
|
| 774 |
+
"content": "<DEPTH_72>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": true,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"151740": {
|
| 782 |
+
"content": "<DEPTH_73>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": true,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"151741": {
|
| 790 |
+
"content": "<DEPTH_74>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": true,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"151742": {
|
| 798 |
+
"content": "<DEPTH_75>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": true,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"151743": {
|
| 806 |
+
"content": "<DEPTH_76>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": true,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"151744": {
|
| 814 |
+
"content": "<DEPTH_77>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": true,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"151745": {
|
| 822 |
+
"content": "<DEPTH_78>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": true,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"151746": {
|
| 830 |
+
"content": "<DEPTH_79>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": true,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"151747": {
|
| 838 |
+
"content": "<DEPTH_80>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": true,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"151748": {
|
| 846 |
+
"content": "<DEPTH_81>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": true,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"151749": {
|
| 854 |
+
"content": "<DEPTH_82>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": true,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": false
|
| 860 |
+
},
|
| 861 |
+
"151750": {
|
| 862 |
+
"content": "<DEPTH_83>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": true,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": false
|
| 868 |
+
},
|
| 869 |
+
"151751": {
|
| 870 |
+
"content": "<DEPTH_84>",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": true,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"151752": {
|
| 878 |
+
"content": "<DEPTH_85>",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": true,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"151753": {
|
| 886 |
+
"content": "<DEPTH_86>",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": true,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"151754": {
|
| 894 |
+
"content": "<DEPTH_87>",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": true,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"151755": {
|
| 902 |
+
"content": "<DEPTH_88>",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": true,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"151756": {
|
| 910 |
+
"content": "<DEPTH_89>",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": true,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"151757": {
|
| 918 |
+
"content": "<DEPTH_90>",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": true,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"151758": {
|
| 926 |
+
"content": "<DEPTH_91>",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": true,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"151759": {
|
| 934 |
+
"content": "<DEPTH_92>",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": true,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"151760": {
|
| 942 |
+
"content": "<DEPTH_93>",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": true,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"151761": {
|
| 950 |
+
"content": "<DEPTH_94>",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": true,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"151762": {
|
| 958 |
+
"content": "<DEPTH_95>",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": true,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"151763": {
|
| 966 |
+
"content": "<DEPTH_96>",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": true,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"151764": {
|
| 974 |
+
"content": "<DEPTH_97>",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": true,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"151765": {
|
| 982 |
+
"content": "<DEPTH_98>",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": true,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"151766": {
|
| 990 |
+
"content": "<DEPTH_99>",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": true,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"151767": {
|
| 998 |
+
"content": "<DEPTH_100>",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": true,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"151768": {
|
| 1006 |
+
"content": "<DEPTH_101>",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": true,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"151769": {
|
| 1014 |
+
"content": "<DEPTH_102>",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": true,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"151770": {
|
| 1022 |
+
"content": "<DEPTH_103>",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": true,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"151771": {
|
| 1030 |
+
"content": "<DEPTH_104>",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": true,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"151772": {
|
| 1038 |
+
"content": "<DEPTH_105>",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": true,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"151773": {
|
| 1046 |
+
"content": "<DEPTH_106>",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": true,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"151774": {
|
| 1054 |
+
"content": "<DEPTH_107>",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": true,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"151775": {
|
| 1062 |
+
"content": "<DEPTH_108>",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": true,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"151776": {
|
| 1070 |
+
"content": "<DEPTH_109>",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": true,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"151777": {
|
| 1078 |
+
"content": "<DEPTH_110>",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": true,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"151778": {
|
| 1086 |
+
"content": "<DEPTH_111>",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": true,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"151779": {
|
| 1094 |
+
"content": "<DEPTH_112>",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": true,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"151780": {
|
| 1102 |
+
"content": "<DEPTH_113>",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": true,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"151781": {
|
| 1110 |
+
"content": "<DEPTH_114>",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": true,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"151782": {
|
| 1118 |
+
"content": "<DEPTH_115>",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": true,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"151783": {
|
| 1126 |
+
"content": "<DEPTH_116>",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": true,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"151784": {
|
| 1134 |
+
"content": "<DEPTH_117>",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": true,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"151785": {
|
| 1142 |
+
"content": "<DEPTH_118>",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": true,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"151786": {
|
| 1150 |
+
"content": "<DEPTH_119>",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": true,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
},
|
| 1157 |
+
"151787": {
|
| 1158 |
+
"content": "<DEPTH_120>",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": true,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": false
|
| 1164 |
+
},
|
| 1165 |
+
"151788": {
|
| 1166 |
+
"content": "<DEPTH_121>",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": true,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": false
|
| 1172 |
+
},
|
| 1173 |
+
"151789": {
|
| 1174 |
+
"content": "<DEPTH_122>",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": true,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": false
|
| 1180 |
+
},
|
| 1181 |
+
"151790": {
|
| 1182 |
+
"content": "<DEPTH_123>",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": true,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": false
|
| 1188 |
+
},
|
| 1189 |
+
"151791": {
|
| 1190 |
+
"content": "<DEPTH_124>",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": true,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": false
|
| 1196 |
+
},
|
| 1197 |
+
"151792": {
|
| 1198 |
+
"content": "<DEPTH_125>",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": true,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": false
|
| 1204 |
+
},
|
| 1205 |
+
"151793": {
|
| 1206 |
+
"content": "<DEPTH_126>",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": true,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": false
|
| 1212 |
+
},
|
| 1213 |
+
"151794": {
|
| 1214 |
+
"content": "<DEPTH_127>",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": true,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": false
|
| 1220 |
+
},
|
| 1221 |
+
"151795": {
|
| 1222 |
+
"content": "|<EXTRA_TOKENS_0>|",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": true
|
| 1228 |
+
},
|
| 1229 |
+
"151796": {
|
| 1230 |
+
"content": "|<EXTRA_TOKENS_1>|",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": true
|
| 1236 |
+
},
|
| 1237 |
+
"151797": {
|
| 1238 |
+
"content": "|<EXTRA_TOKENS_2>|",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": true
|
| 1244 |
+
},
|
| 1245 |
+
"151798": {
|
| 1246 |
+
"content": "|<EXTRA_TOKENS_3>|",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": true
|
| 1252 |
+
},
|
| 1253 |
+
"151799": {
|
| 1254 |
+
"content": "|<EXTRA_TOKENS_4>|",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": true
|
| 1260 |
+
},
|
| 1261 |
+
"151800": {
|
| 1262 |
+
"content": "|<EXTRA_TOKENS_5>|",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": true
|
| 1268 |
+
},
|
| 1269 |
+
"151801": {
|
| 1270 |
+
"content": "|<EXTRA_TOKENS_6>|",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": true
|
| 1276 |
+
},
|
| 1277 |
+
"151802": {
|
| 1278 |
+
"content": "|<EXTRA_TOKENS_7>|",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": true
|
| 1284 |
+
},
|
| 1285 |
+
"151803": {
|
| 1286 |
+
"content": "|<EXTRA_TOKENS_8>|",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": true
|
| 1292 |
+
},
|
| 1293 |
+
"151804": {
|
| 1294 |
+
"content": "|<EXTRA_TOKENS_9>|",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": true
|
| 1300 |
+
},
|
| 1301 |
+
"151805": {
|
| 1302 |
+
"content": "|<EXTRA_TOKENS_10>|",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": true
|
| 1308 |
+
},
|
| 1309 |
+
"151806": {
|
| 1310 |
+
"content": "|<EXTRA_TOKENS_11>|",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": true
|
| 1316 |
+
},
|
| 1317 |
+
"151807": {
|
| 1318 |
+
"content": "|<EXTRA_TOKENS_12>|",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": true
|
| 1324 |
+
},
|
| 1325 |
+
"151808": {
|
| 1326 |
+
"content": "|<EXTRA_TOKENS_13>|",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": true
|
| 1332 |
+
},
|
| 1333 |
+
"151809": {
|
| 1334 |
+
"content": "|<EXTRA_TOKENS_14>|",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": true
|
| 1340 |
+
},
|
| 1341 |
+
"151810": {
|
| 1342 |
+
"content": "|<EXTRA_TOKENS_15>|",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": true
|
| 1348 |
+
},
|
| 1349 |
+
"151811": {
|
| 1350 |
+
"content": "|<EXTRA_TOKENS_16>|",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": true
|
| 1356 |
+
},
|
| 1357 |
+
"151812": {
|
| 1358 |
+
"content": "|<EXTRA_TOKENS_17>|",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": true
|
| 1364 |
+
},
|
| 1365 |
+
"151813": {
|
| 1366 |
+
"content": "|<EXTRA_TOKENS_18>|",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": true
|
| 1372 |
+
},
|
| 1373 |
+
"151814": {
|
| 1374 |
+
"content": "|<EXTRA_TOKENS_19>|",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": true
|
| 1380 |
+
},
|
| 1381 |
+
"151815": {
|
| 1382 |
+
"content": "|<EXTRA_TOKENS_20>|",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": true
|
| 1388 |
+
},
|
| 1389 |
+
"151816": {
|
| 1390 |
+
"content": "|<EXTRA_TOKENS_21>|",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": true
|
| 1396 |
+
},
|
| 1397 |
+
"151817": {
|
| 1398 |
+
"content": "|<EXTRA_TOKENS_22>|",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": true
|
| 1404 |
+
},
|
| 1405 |
+
"151818": {
|
| 1406 |
+
"content": "|<EXTRA_TOKENS_23>|",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": true
|
| 1412 |
+
},
|
| 1413 |
+
"151819": {
|
| 1414 |
+
"content": "|<EXTRA_TOKENS_24>|",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": true
|
| 1420 |
+
},
|
| 1421 |
+
"151820": {
|
| 1422 |
+
"content": "|<EXTRA_TOKENS_25>|",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": true
|
| 1428 |
+
},
|
| 1429 |
+
"151821": {
|
| 1430 |
+
"content": "|<EXTRA_TOKENS_26>|",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": true
|
| 1436 |
+
},
|
| 1437 |
+
"151822": {
|
| 1438 |
+
"content": "|<EXTRA_TOKENS_27>|",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": true
|
| 1444 |
+
},
|
| 1445 |
+
"151823": {
|
| 1446 |
+
"content": "|<EXTRA_TOKENS_28>|",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": true
|
| 1452 |
+
},
|
| 1453 |
+
"151824": {
|
| 1454 |
+
"content": "|<EXTRA_TOKENS_29>|",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": true
|
| 1460 |
+
},
|
| 1461 |
+
"151825": {
|
| 1462 |
+
"content": "|<EXTRA_TOKENS_30>|",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": true
|
| 1468 |
+
},
|
| 1469 |
+
"151826": {
|
| 1470 |
+
"content": "|<EXTRA_TOKENS_31>|",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": true
|
| 1476 |
+
},
|
| 1477 |
+
"151827": {
|
| 1478 |
+
"content": "|<EXTRA_TOKENS_32>|",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": true
|
| 1484 |
+
},
|
| 1485 |
+
"151828": {
|
| 1486 |
+
"content": "|<EXTRA_TOKENS_33>|",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": true
|
| 1492 |
+
},
|
| 1493 |
+
"151829": {
|
| 1494 |
+
"content": "|<EXTRA_TOKENS_34>|",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": true
|
| 1500 |
+
},
|
| 1501 |
+
"151830": {
|
| 1502 |
+
"content": "|<EXTRA_TOKENS_35>|",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": true
|
| 1508 |
+
},
|
| 1509 |
+
"151831": {
|
| 1510 |
+
"content": "|<EXTRA_TOKENS_36>|",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": true
|
| 1516 |
+
},
|
| 1517 |
+
"151832": {
|
| 1518 |
+
"content": "|<EXTRA_TOKENS_37>|",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": true
|
| 1524 |
+
},
|
| 1525 |
+
"151833": {
|
| 1526 |
+
"content": "|<EXTRA_TOKENS_38>|",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": true
|
| 1532 |
+
},
|
| 1533 |
+
"151834": {
|
| 1534 |
+
"content": "|<EXTRA_TOKENS_39>|",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": true
|
| 1540 |
+
},
|
| 1541 |
+
"151835": {
|
| 1542 |
+
"content": "|<EXTRA_TOKENS_40>|",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": true
|
| 1548 |
+
},
|
| 1549 |
+
"151836": {
|
| 1550 |
+
"content": "|<EXTRA_TOKENS_41>|",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": true
|
| 1556 |
+
},
|
| 1557 |
+
"151837": {
|
| 1558 |
+
"content": "|<EXTRA_TOKENS_42>|",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": true
|
| 1564 |
+
},
|
| 1565 |
+
"151838": {
|
| 1566 |
+
"content": "|<EXTRA_TOKENS_43>|",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": true
|
| 1572 |
+
},
|
| 1573 |
+
"151839": {
|
| 1574 |
+
"content": "|<EXTRA_TOKENS_44>|",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": true
|
| 1580 |
+
},
|
| 1581 |
+
"151840": {
|
| 1582 |
+
"content": "|<EXTRA_TOKENS_45>|",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": true
|
| 1588 |
+
},
|
| 1589 |
+
"151841": {
|
| 1590 |
+
"content": "|<EXTRA_TOKENS_46>|",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": true
|
| 1596 |
+
},
|
| 1597 |
+
"151842": {
|
| 1598 |
+
"content": "|<EXTRA_TOKENS_47>|",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": true
|
| 1604 |
+
},
|
| 1605 |
+
"151843": {
|
| 1606 |
+
"content": "|<EXTRA_TOKENS_48>|",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": true
|
| 1612 |
+
},
|
| 1613 |
+
"151844": {
|
| 1614 |
+
"content": "|<EXTRA_TOKENS_49>|",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": true
|
| 1620 |
+
},
|
| 1621 |
+
"151845": {
|
| 1622 |
+
"content": "|<EXTRA_TOKENS_50>|",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": true
|
| 1628 |
+
},
|
| 1629 |
+
"151846": {
|
| 1630 |
+
"content": "|<EXTRA_TOKENS_51>|",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": true
|
| 1636 |
+
},
|
| 1637 |
+
"151847": {
|
| 1638 |
+
"content": "|<EXTRA_TOKENS_52>|",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": true
|
| 1644 |
+
},
|
| 1645 |
+
"151848": {
|
| 1646 |
+
"content": "|<EXTRA_TOKENS_53>|",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": true
|
| 1652 |
+
},
|
| 1653 |
+
"151849": {
|
| 1654 |
+
"content": "|<EXTRA_TOKENS_54>|",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": true
|
| 1660 |
+
},
|
| 1661 |
+
"151850": {
|
| 1662 |
+
"content": "|<EXTRA_TOKENS_55>|",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": true
|
| 1668 |
+
},
|
| 1669 |
+
"151851": {
|
| 1670 |
+
"content": "|<EXTRA_TOKENS_56>|",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": true
|
| 1676 |
+
},
|
| 1677 |
+
"151852": {
|
| 1678 |
+
"content": "|<EXTRA_TOKENS_57>|",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": true
|
| 1684 |
+
},
|
| 1685 |
+
"151853": {
|
| 1686 |
+
"content": "|<EXTRA_TOKENS_58>|",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": true
|
| 1692 |
+
},
|
| 1693 |
+
"151854": {
|
| 1694 |
+
"content": "|<EXTRA_TOKENS_59>|",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": true
|
| 1700 |
+
},
|
| 1701 |
+
"151855": {
|
| 1702 |
+
"content": "|<EXTRA_TOKENS_60>|",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": true
|
| 1708 |
+
},
|
| 1709 |
+
"151856": {
|
| 1710 |
+
"content": "|<EXTRA_TOKENS_61>|",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": true
|
| 1716 |
+
},
|
| 1717 |
+
"151857": {
|
| 1718 |
+
"content": "|<EXTRA_TOKENS_62>|",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": true
|
| 1724 |
+
},
|
| 1725 |
+
"151858": {
|
| 1726 |
+
"content": "|<EXTRA_TOKENS_63>|",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": true
|
| 1732 |
+
},
|
| 1733 |
+
"151859": {
|
| 1734 |
+
"content": "|<EXTRA_TOKENS_64>|",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": true
|
| 1740 |
+
},
|
| 1741 |
+
"151860": {
|
| 1742 |
+
"content": "|<EXTRA_TOKENS_65>|",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": true
|
| 1748 |
+
},
|
| 1749 |
+
"151861": {
|
| 1750 |
+
"content": "|<EXTRA_TOKENS_66>|",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": true
|
| 1756 |
+
},
|
| 1757 |
+
"151862": {
|
| 1758 |
+
"content": "|<EXTRA_TOKENS_67>|",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": true
|
| 1764 |
+
},
|
| 1765 |
+
"151863": {
|
| 1766 |
+
"content": "|<EXTRA_TOKENS_68>|",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": true
|
| 1772 |
+
},
|
| 1773 |
+
"151864": {
|
| 1774 |
+
"content": "|<EXTRA_TOKENS_69>|",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": true
|
| 1780 |
+
},
|
| 1781 |
+
"151865": {
|
| 1782 |
+
"content": "|<EXTRA_TOKENS_70>|",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": true
|
| 1788 |
+
},
|
| 1789 |
+
"151866": {
|
| 1790 |
+
"content": "|<EXTRA_TOKENS_71>|",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": true
|
| 1796 |
+
},
|
| 1797 |
+
"151867": {
|
| 1798 |
+
"content": "|<EXTRA_TOKENS_72>|",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": true
|
| 1804 |
+
},
|
| 1805 |
+
"151868": {
|
| 1806 |
+
"content": "|<EXTRA_TOKENS_73>|",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": true
|
| 1812 |
+
},
|
| 1813 |
+
"151869": {
|
| 1814 |
+
"content": "|<EXTRA_TOKENS_74>|",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": true
|
| 1820 |
+
},
|
| 1821 |
+
"151870": {
|
| 1822 |
+
"content": "|<EXTRA_TOKENS_75>|",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": true
|
| 1828 |
+
},
|
| 1829 |
+
"151871": {
|
| 1830 |
+
"content": "|<EXTRA_TOKENS_76>|",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": true
|
| 1836 |
+
},
|
| 1837 |
+
"151872": {
|
| 1838 |
+
"content": "|<EXTRA_TOKENS_77>|",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": true
|
| 1844 |
+
},
|
| 1845 |
+
"151873": {
|
| 1846 |
+
"content": "|<EXTRA_TOKENS_78>|",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": true
|
| 1852 |
+
},
|
| 1853 |
+
"151874": {
|
| 1854 |
+
"content": "|<EXTRA_TOKENS_79>|",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": true
|
| 1860 |
+
},
|
| 1861 |
+
"151875": {
|
| 1862 |
+
"content": "|<EXTRA_TOKENS_80>|",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": true
|
| 1868 |
+
},
|
| 1869 |
+
"151876": {
|
| 1870 |
+
"content": "|<EXTRA_TOKENS_81>|",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": true
|
| 1876 |
+
},
|
| 1877 |
+
"151877": {
|
| 1878 |
+
"content": "|<EXTRA_TOKENS_82>|",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": true
|
| 1884 |
+
},
|
| 1885 |
+
"151878": {
|
| 1886 |
+
"content": "|<EXTRA_TOKENS_83>|",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": true
|
| 1892 |
+
},
|
| 1893 |
+
"151879": {
|
| 1894 |
+
"content": "|<EXTRA_TOKENS_84>|",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": true
|
| 1900 |
+
},
|
| 1901 |
+
"151880": {
|
| 1902 |
+
"content": "|<EXTRA_TOKENS_85>|",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": true
|
| 1908 |
+
},
|
| 1909 |
+
"151881": {
|
| 1910 |
+
"content": "|<EXTRA_TOKENS_86>|",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": true
|
| 1916 |
+
},
|
| 1917 |
+
"151882": {
|
| 1918 |
+
"content": "|<EXTRA_TOKENS_87>|",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": true
|
| 1924 |
+
},
|
| 1925 |
+
"151883": {
|
| 1926 |
+
"content": "|<EXTRA_TOKENS_88>|",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": true
|
| 1932 |
+
},
|
| 1933 |
+
"151884": {
|
| 1934 |
+
"content": "|<EXTRA_TOKENS_89>|",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": true
|
| 1940 |
+
},
|
| 1941 |
+
"151885": {
|
| 1942 |
+
"content": "|<EXTRA_TOKENS_90>|",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": true
|
| 1948 |
+
},
|
| 1949 |
+
"151886": {
|
| 1950 |
+
"content": "|<EXTRA_TOKENS_91>|",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": true
|
| 1956 |
+
},
|
| 1957 |
+
"151887": {
|
| 1958 |
+
"content": "|<EXTRA_TOKENS_92>|",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": true
|
| 1964 |
+
},
|
| 1965 |
+
"151888": {
|
| 1966 |
+
"content": "|<EXTRA_TOKENS_93>|",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": true
|
| 1972 |
+
},
|
| 1973 |
+
"151889": {
|
| 1974 |
+
"content": "|<EXTRA_TOKENS_94>|",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": true
|
| 1980 |
+
},
|
| 1981 |
+
"151890": {
|
| 1982 |
+
"content": "|<EXTRA_TOKENS_95>|",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": true
|
| 1988 |
+
},
|
| 1989 |
+
"151891": {
|
| 1990 |
+
"content": "|<EXTRA_TOKENS_96>|",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": true
|
| 1996 |
+
},
|
| 1997 |
+
"151892": {
|
| 1998 |
+
"content": "|<EXTRA_TOKENS_97>|",
|
| 1999 |
+
"lstrip": false,
|
| 2000 |
+
"normalized": false,
|
| 2001 |
+
"rstrip": false,
|
| 2002 |
+
"single_word": false,
|
| 2003 |
+
"special": true
|
| 2004 |
+
},
|
| 2005 |
+
"151893": {
|
| 2006 |
+
"content": "|<EXTRA_TOKENS_98>|",
|
| 2007 |
+
"lstrip": false,
|
| 2008 |
+
"normalized": false,
|
| 2009 |
+
"rstrip": false,
|
| 2010 |
+
"single_word": false,
|
| 2011 |
+
"special": true
|
| 2012 |
+
},
|
| 2013 |
+
"151894": {
|
| 2014 |
+
"content": "|<EXTRA_TOKENS_99>|",
|
| 2015 |
+
"lstrip": false,
|
| 2016 |
+
"normalized": false,
|
| 2017 |
+
"rstrip": false,
|
| 2018 |
+
"single_word": false,
|
| 2019 |
+
"special": true
|
| 2020 |
+
},
|
| 2021 |
+
"151895": {
|
| 2022 |
+
"content": "|<EXTRA_TOKENS_100>|",
|
| 2023 |
+
"lstrip": false,
|
| 2024 |
+
"normalized": false,
|
| 2025 |
+
"rstrip": false,
|
| 2026 |
+
"single_word": false,
|
| 2027 |
+
"special": true
|
| 2028 |
+
},
|
| 2029 |
+
"151896": {
|
| 2030 |
+
"content": "|<EXTRA_TOKENS_101>|",
|
| 2031 |
+
"lstrip": false,
|
| 2032 |
+
"normalized": false,
|
| 2033 |
+
"rstrip": false,
|
| 2034 |
+
"single_word": false,
|
| 2035 |
+
"special": true
|
| 2036 |
+
},
|
| 2037 |
+
"151897": {
|
| 2038 |
+
"content": "|<EXTRA_TOKENS_102>|",
|
| 2039 |
+
"lstrip": false,
|
| 2040 |
+
"normalized": false,
|
| 2041 |
+
"rstrip": false,
|
| 2042 |
+
"single_word": false,
|
| 2043 |
+
"special": true
|
| 2044 |
+
},
|
| 2045 |
+
"151898": {
|
| 2046 |
+
"content": "|<EXTRA_TOKENS_103>|",
|
| 2047 |
+
"lstrip": false,
|
| 2048 |
+
"normalized": false,
|
| 2049 |
+
"rstrip": false,
|
| 2050 |
+
"single_word": false,
|
| 2051 |
+
"special": true
|
| 2052 |
+
},
|
| 2053 |
+
"151899": {
|
| 2054 |
+
"content": "|<EXTRA_TOKENS_104>|",
|
| 2055 |
+
"lstrip": false,
|
| 2056 |
+
"normalized": false,
|
| 2057 |
+
"rstrip": false,
|
| 2058 |
+
"single_word": false,
|
| 2059 |
+
"special": true
|
| 2060 |
+
},
|
| 2061 |
+
"151900": {
|
| 2062 |
+
"content": "|<EXTRA_TOKENS_105>|",
|
| 2063 |
+
"lstrip": false,
|
| 2064 |
+
"normalized": false,
|
| 2065 |
+
"rstrip": false,
|
| 2066 |
+
"single_word": false,
|
| 2067 |
+
"special": true
|
| 2068 |
+
},
|
| 2069 |
+
"151901": {
|
| 2070 |
+
"content": "|<EXTRA_TOKENS_106>|",
|
| 2071 |
+
"lstrip": false,
|
| 2072 |
+
"normalized": false,
|
| 2073 |
+
"rstrip": false,
|
| 2074 |
+
"single_word": false,
|
| 2075 |
+
"special": true
|
| 2076 |
+
},
|
| 2077 |
+
"151902": {
|
| 2078 |
+
"content": "|<EXTRA_TOKENS_107>|",
|
| 2079 |
+
"lstrip": false,
|
| 2080 |
+
"normalized": false,
|
| 2081 |
+
"rstrip": false,
|
| 2082 |
+
"single_word": false,
|
| 2083 |
+
"special": true
|
| 2084 |
+
},
|
| 2085 |
+
"151903": {
|
| 2086 |
+
"content": "|<EXTRA_TOKENS_108>|",
|
| 2087 |
+
"lstrip": false,
|
| 2088 |
+
"normalized": false,
|
| 2089 |
+
"rstrip": false,
|
| 2090 |
+
"single_word": false,
|
| 2091 |
+
"special": true
|
| 2092 |
+
},
|
| 2093 |
+
"151904": {
|
| 2094 |
+
"content": "|<EXTRA_TOKENS_109>|",
|
| 2095 |
+
"lstrip": false,
|
| 2096 |
+
"normalized": false,
|
| 2097 |
+
"rstrip": false,
|
| 2098 |
+
"single_word": false,
|
| 2099 |
+
"special": true
|
| 2100 |
+
},
|
| 2101 |
+
"151905": {
|
| 2102 |
+
"content": "|<EXTRA_TOKENS_110>|",
|
| 2103 |
+
"lstrip": false,
|
| 2104 |
+
"normalized": false,
|
| 2105 |
+
"rstrip": false,
|
| 2106 |
+
"single_word": false,
|
| 2107 |
+
"special": true
|
| 2108 |
+
},
|
| 2109 |
+
"151906": {
|
| 2110 |
+
"content": "|<EXTRA_TOKENS_111>|",
|
| 2111 |
+
"lstrip": false,
|
| 2112 |
+
"normalized": false,
|
| 2113 |
+
"rstrip": false,
|
| 2114 |
+
"single_word": false,
|
| 2115 |
+
"special": true
|
| 2116 |
+
},
|
| 2117 |
+
"151907": {
|
| 2118 |
+
"content": "|<EXTRA_TOKENS_112>|",
|
| 2119 |
+
"lstrip": false,
|
| 2120 |
+
"normalized": false,
|
| 2121 |
+
"rstrip": false,
|
| 2122 |
+
"single_word": false,
|
| 2123 |
+
"special": true
|
| 2124 |
+
},
|
| 2125 |
+
"151908": {
|
| 2126 |
+
"content": "|<EXTRA_TOKENS_113>|",
|
| 2127 |
+
"lstrip": false,
|
| 2128 |
+
"normalized": false,
|
| 2129 |
+
"rstrip": false,
|
| 2130 |
+
"single_word": false,
|
| 2131 |
+
"special": true
|
| 2132 |
+
},
|
| 2133 |
+
"151909": {
|
| 2134 |
+
"content": "|<EXTRA_TOKENS_114>|",
|
| 2135 |
+
"lstrip": false,
|
| 2136 |
+
"normalized": false,
|
| 2137 |
+
"rstrip": false,
|
| 2138 |
+
"single_word": false,
|
| 2139 |
+
"special": true
|
| 2140 |
+
},
|
| 2141 |
+
"151910": {
|
| 2142 |
+
"content": "|<EXTRA_TOKENS_115>|",
|
| 2143 |
+
"lstrip": false,
|
| 2144 |
+
"normalized": false,
|
| 2145 |
+
"rstrip": false,
|
| 2146 |
+
"single_word": false,
|
| 2147 |
+
"special": true
|
| 2148 |
+
},
|
| 2149 |
+
"151911": {
|
| 2150 |
+
"content": "|<EXTRA_TOKENS_116>|",
|
| 2151 |
+
"lstrip": false,
|
| 2152 |
+
"normalized": false,
|
| 2153 |
+
"rstrip": false,
|
| 2154 |
+
"single_word": false,
|
| 2155 |
+
"special": true
|
| 2156 |
+
},
|
| 2157 |
+
"151912": {
|
| 2158 |
+
"content": "|<EXTRA_TOKENS_117>|",
|
| 2159 |
+
"lstrip": false,
|
| 2160 |
+
"normalized": false,
|
| 2161 |
+
"rstrip": false,
|
| 2162 |
+
"single_word": false,
|
| 2163 |
+
"special": true
|
| 2164 |
+
},
|
| 2165 |
+
"151913": {
|
| 2166 |
+
"content": "|<EXTRA_TOKENS_118>|",
|
| 2167 |
+
"lstrip": false,
|
| 2168 |
+
"normalized": false,
|
| 2169 |
+
"rstrip": false,
|
| 2170 |
+
"single_word": false,
|
| 2171 |
+
"special": true
|
| 2172 |
+
},
|
| 2173 |
+
"151914": {
|
| 2174 |
+
"content": "|<EXTRA_TOKENS_119>|",
|
| 2175 |
+
"lstrip": false,
|
| 2176 |
+
"normalized": false,
|
| 2177 |
+
"rstrip": false,
|
| 2178 |
+
"single_word": false,
|
| 2179 |
+
"special": true
|
| 2180 |
+
},
|
| 2181 |
+
"151915": {
|
| 2182 |
+
"content": "|<EXTRA_TOKENS_120>|",
|
| 2183 |
+
"lstrip": false,
|
| 2184 |
+
"normalized": false,
|
| 2185 |
+
"rstrip": false,
|
| 2186 |
+
"single_word": false,
|
| 2187 |
+
"special": true
|
| 2188 |
+
},
|
| 2189 |
+
"151916": {
|
| 2190 |
+
"content": "|<EXTRA_TOKENS_121>|",
|
| 2191 |
+
"lstrip": false,
|
| 2192 |
+
"normalized": false,
|
| 2193 |
+
"rstrip": false,
|
| 2194 |
+
"single_word": false,
|
| 2195 |
+
"special": true
|
| 2196 |
+
},
|
| 2197 |
+
"151917": {
|
| 2198 |
+
"content": "|<EXTRA_TOKENS_122>|",
|
| 2199 |
+
"lstrip": false,
|
| 2200 |
+
"normalized": false,
|
| 2201 |
+
"rstrip": false,
|
| 2202 |
+
"single_word": false,
|
| 2203 |
+
"special": true
|
| 2204 |
+
},
|
| 2205 |
+
"151918": {
|
| 2206 |
+
"content": "|<EXTRA_TOKENS_123>|",
|
| 2207 |
+
"lstrip": false,
|
| 2208 |
+
"normalized": false,
|
| 2209 |
+
"rstrip": false,
|
| 2210 |
+
"single_word": false,
|
| 2211 |
+
"special": true
|
| 2212 |
+
},
|
| 2213 |
+
"151919": {
|
| 2214 |
+
"content": "|<EXTRA_TOKENS_124>|",
|
| 2215 |
+
"lstrip": false,
|
| 2216 |
+
"normalized": false,
|
| 2217 |
+
"rstrip": false,
|
| 2218 |
+
"single_word": false,
|
| 2219 |
+
"special": true
|
| 2220 |
+
},
|
| 2221 |
+
"151920": {
|
| 2222 |
+
"content": "|<EXTRA_TOKENS_125>|",
|
| 2223 |
+
"lstrip": false,
|
| 2224 |
+
"normalized": false,
|
| 2225 |
+
"rstrip": false,
|
| 2226 |
+
"single_word": false,
|
| 2227 |
+
"special": true
|
| 2228 |
+
},
|
| 2229 |
+
"151921": {
|
| 2230 |
+
"content": "|<EXTRA_TOKENS_126>|",
|
| 2231 |
+
"lstrip": false,
|
| 2232 |
+
"normalized": false,
|
| 2233 |
+
"rstrip": false,
|
| 2234 |
+
"single_word": false,
|
| 2235 |
+
"special": true
|
| 2236 |
+
},
|
| 2237 |
+
"151922": {
|
| 2238 |
+
"content": "|<EXTRA_TOKENS_127>|",
|
| 2239 |
+
"lstrip": false,
|
| 2240 |
+
"normalized": false,
|
| 2241 |
+
"rstrip": false,
|
| 2242 |
+
"single_word": false,
|
| 2243 |
+
"special": true
|
| 2244 |
+
},
|
| 2245 |
+
"151923": {
|
| 2246 |
+
"content": "|<EXTRA_TOKENS_128>|",
|
| 2247 |
+
"lstrip": false,
|
| 2248 |
+
"normalized": false,
|
| 2249 |
+
"rstrip": false,
|
| 2250 |
+
"single_word": false,
|
| 2251 |
+
"special": true
|
| 2252 |
+
},
|
| 2253 |
+
"151924": {
|
| 2254 |
+
"content": "|<EXTRA_TOKENS_129>|",
|
| 2255 |
+
"lstrip": false,
|
| 2256 |
+
"normalized": false,
|
| 2257 |
+
"rstrip": false,
|
| 2258 |
+
"single_word": false,
|
| 2259 |
+
"special": true
|
| 2260 |
+
},
|
| 2261 |
+
"151925": {
|
| 2262 |
+
"content": "|<EXTRA_TOKENS_130>|",
|
| 2263 |
+
"lstrip": false,
|
| 2264 |
+
"normalized": false,
|
| 2265 |
+
"rstrip": false,
|
| 2266 |
+
"single_word": false,
|
| 2267 |
+
"special": true
|
| 2268 |
+
},
|
| 2269 |
+
"151926": {
|
| 2270 |
+
"content": "|<EXTRA_TOKENS_131>|",
|
| 2271 |
+
"lstrip": false,
|
| 2272 |
+
"normalized": false,
|
| 2273 |
+
"rstrip": false,
|
| 2274 |
+
"single_word": false,
|
| 2275 |
+
"special": true
|
| 2276 |
+
},
|
| 2277 |
+
"151927": {
|
| 2278 |
+
"content": "|<EXTRA_TOKENS_132>|",
|
| 2279 |
+
"lstrip": false,
|
| 2280 |
+
"normalized": false,
|
| 2281 |
+
"rstrip": false,
|
| 2282 |
+
"single_word": false,
|
| 2283 |
+
"special": true
|
| 2284 |
+
},
|
| 2285 |
+
"151928": {
|
| 2286 |
+
"content": "|<EXTRA_TOKENS_133>|",
|
| 2287 |
+
"lstrip": false,
|
| 2288 |
+
"normalized": false,
|
| 2289 |
+
"rstrip": false,
|
| 2290 |
+
"single_word": false,
|
| 2291 |
+
"special": true
|
| 2292 |
+
},
|
| 2293 |
+
"151929": {
|
| 2294 |
+
"content": "|<EXTRA_TOKENS_134>|",
|
| 2295 |
+
"lstrip": false,
|
| 2296 |
+
"normalized": false,
|
| 2297 |
+
"rstrip": false,
|
| 2298 |
+
"single_word": false,
|
| 2299 |
+
"special": true
|
| 2300 |
+
},
|
| 2301 |
+
"151930": {
|
| 2302 |
+
"content": "|<EXTRA_TOKENS_135>|",
|
| 2303 |
+
"lstrip": false,
|
| 2304 |
+
"normalized": false,
|
| 2305 |
+
"rstrip": false,
|
| 2306 |
+
"single_word": false,
|
| 2307 |
+
"special": true
|
| 2308 |
+
},
|
| 2309 |
+
"151931": {
|
| 2310 |
+
"content": "|<EXTRA_TOKENS_136>|",
|
| 2311 |
+
"lstrip": false,
|
| 2312 |
+
"normalized": false,
|
| 2313 |
+
"rstrip": false,
|
| 2314 |
+
"single_word": false,
|
| 2315 |
+
"special": true
|
| 2316 |
+
},
|
| 2317 |
+
"151932": {
|
| 2318 |
+
"content": "|<EXTRA_TOKENS_137>|",
|
| 2319 |
+
"lstrip": false,
|
| 2320 |
+
"normalized": false,
|
| 2321 |
+
"rstrip": false,
|
| 2322 |
+
"single_word": false,
|
| 2323 |
+
"special": true
|
| 2324 |
+
},
|
| 2325 |
+
"151933": {
|
| 2326 |
+
"content": "|<EXTRA_TOKENS_138>|",
|
| 2327 |
+
"lstrip": false,
|
| 2328 |
+
"normalized": false,
|
| 2329 |
+
"rstrip": false,
|
| 2330 |
+
"single_word": false,
|
| 2331 |
+
"special": true
|
| 2332 |
+
},
|
| 2333 |
+
"151934": {
|
| 2334 |
+
"content": "|<EXTRA_TOKENS_139>|",
|
| 2335 |
+
"lstrip": false,
|
| 2336 |
+
"normalized": false,
|
| 2337 |
+
"rstrip": false,
|
| 2338 |
+
"single_word": false,
|
| 2339 |
+
"special": true
|
| 2340 |
+
},
|
| 2341 |
+
"151935": {
|
| 2342 |
+
"content": "|<EXTRA_TOKENS_140>|",
|
| 2343 |
+
"lstrip": false,
|
| 2344 |
+
"normalized": false,
|
| 2345 |
+
"rstrip": false,
|
| 2346 |
+
"single_word": false,
|
| 2347 |
+
"special": true
|
| 2348 |
+
},
|
| 2349 |
+
"151936": {
|
| 2350 |
+
"content": "|<EXTRA_TOKENS_141>|",
|
| 2351 |
+
"lstrip": false,
|
| 2352 |
+
"normalized": false,
|
| 2353 |
+
"rstrip": false,
|
| 2354 |
+
"single_word": false,
|
| 2355 |
+
"special": true
|
| 2356 |
+
},
|
| 2357 |
+
"151937": {
|
| 2358 |
+
"content": "|<EXTRA_TOKENS_142>|",
|
| 2359 |
+
"lstrip": false,
|
| 2360 |
+
"normalized": false,
|
| 2361 |
+
"rstrip": false,
|
| 2362 |
+
"single_word": false,
|
| 2363 |
+
"special": true
|
| 2364 |
+
},
|
| 2365 |
+
"151938": {
|
| 2366 |
+
"content": "|<EXTRA_TOKENS_143>|",
|
| 2367 |
+
"lstrip": false,
|
| 2368 |
+
"normalized": false,
|
| 2369 |
+
"rstrip": false,
|
| 2370 |
+
"single_word": false,
|
| 2371 |
+
"special": true
|
| 2372 |
+
},
|
| 2373 |
+
"151939": {
|
| 2374 |
+
"content": "|<EXTRA_TOKENS_144>|",
|
| 2375 |
+
"lstrip": false,
|
| 2376 |
+
"normalized": false,
|
| 2377 |
+
"rstrip": false,
|
| 2378 |
+
"single_word": false,
|
| 2379 |
+
"special": true
|
| 2380 |
+
},
|
| 2381 |
+
"151940": {
|
| 2382 |
+
"content": "|<EXTRA_TOKENS_145>|",
|
| 2383 |
+
"lstrip": false,
|
| 2384 |
+
"normalized": false,
|
| 2385 |
+
"rstrip": false,
|
| 2386 |
+
"single_word": false,
|
| 2387 |
+
"special": true
|
| 2388 |
+
},
|
| 2389 |
+
"151941": {
|
| 2390 |
+
"content": "|<EXTRA_TOKENS_146>|",
|
| 2391 |
+
"lstrip": false,
|
| 2392 |
+
"normalized": false,
|
| 2393 |
+
"rstrip": false,
|
| 2394 |
+
"single_word": false,
|
| 2395 |
+
"special": true
|
| 2396 |
+
},
|
| 2397 |
+
"151942": {
|
| 2398 |
+
"content": "|<EXTRA_TOKENS_147>|",
|
| 2399 |
+
"lstrip": false,
|
| 2400 |
+
"normalized": false,
|
| 2401 |
+
"rstrip": false,
|
| 2402 |
+
"single_word": false,
|
| 2403 |
+
"special": true
|
| 2404 |
+
},
|
| 2405 |
+
"151943": {
|
| 2406 |
+
"content": "|<EXTRA_TOKENS_148>|",
|
| 2407 |
+
"lstrip": false,
|
| 2408 |
+
"normalized": false,
|
| 2409 |
+
"rstrip": false,
|
| 2410 |
+
"single_word": false,
|
| 2411 |
+
"special": true
|
| 2412 |
+
},
|
| 2413 |
+
"151944": {
|
| 2414 |
+
"content": "|<EXTRA_TOKENS_149>|",
|
| 2415 |
+
"lstrip": false,
|
| 2416 |
+
"normalized": false,
|
| 2417 |
+
"rstrip": false,
|
| 2418 |
+
"single_word": false,
|
| 2419 |
+
"special": true
|
| 2420 |
+
},
|
| 2421 |
+
"151945": {
|
| 2422 |
+
"content": "|<EXTRA_TOKENS_150>|",
|
| 2423 |
+
"lstrip": false,
|
| 2424 |
+
"normalized": false,
|
| 2425 |
+
"rstrip": false,
|
| 2426 |
+
"single_word": false,
|
| 2427 |
+
"special": true
|
| 2428 |
+
},
|
| 2429 |
+
"151946": {
|
| 2430 |
+
"content": "|<EXTRA_TOKENS_151>|",
|
| 2431 |
+
"lstrip": false,
|
| 2432 |
+
"normalized": false,
|
| 2433 |
+
"rstrip": false,
|
| 2434 |
+
"single_word": false,
|
| 2435 |
+
"special": true
|
| 2436 |
+
},
|
| 2437 |
+
"151947": {
|
| 2438 |
+
"content": "|<EXTRA_TOKENS_152>|",
|
| 2439 |
+
"lstrip": false,
|
| 2440 |
+
"normalized": false,
|
| 2441 |
+
"rstrip": false,
|
| 2442 |
+
"single_word": false,
|
| 2443 |
+
"special": true
|
| 2444 |
+
},
|
| 2445 |
+
"151948": {
|
| 2446 |
+
"content": "|<EXTRA_TOKENS_153>|",
|
| 2447 |
+
"lstrip": false,
|
| 2448 |
+
"normalized": false,
|
| 2449 |
+
"rstrip": false,
|
| 2450 |
+
"single_word": false,
|
| 2451 |
+
"special": true
|
| 2452 |
+
},
|
| 2453 |
+
"151949": {
|
| 2454 |
+
"content": "|<EXTRA_TOKENS_154>|",
|
| 2455 |
+
"lstrip": false,
|
| 2456 |
+
"normalized": false,
|
| 2457 |
+
"rstrip": false,
|
| 2458 |
+
"single_word": false,
|
| 2459 |
+
"special": true
|
| 2460 |
+
},
|
| 2461 |
+
"151950": {
|
| 2462 |
+
"content": "|<EXTRA_TOKENS_155>|",
|
| 2463 |
+
"lstrip": false,
|
| 2464 |
+
"normalized": false,
|
| 2465 |
+
"rstrip": false,
|
| 2466 |
+
"single_word": false,
|
| 2467 |
+
"special": true
|
| 2468 |
+
},
|
| 2469 |
+
"151951": {
|
| 2470 |
+
"content": "|<EXTRA_TOKENS_156>|",
|
| 2471 |
+
"lstrip": false,
|
| 2472 |
+
"normalized": false,
|
| 2473 |
+
"rstrip": false,
|
| 2474 |
+
"single_word": false,
|
| 2475 |
+
"special": true
|
| 2476 |
+
},
|
| 2477 |
+
"151952": {
|
| 2478 |
+
"content": "|<EXTRA_TOKENS_157>|",
|
| 2479 |
+
"lstrip": false,
|
| 2480 |
+
"normalized": false,
|
| 2481 |
+
"rstrip": false,
|
| 2482 |
+
"single_word": false,
|
| 2483 |
+
"special": true
|
| 2484 |
+
},
|
| 2485 |
+
"151953": {
|
| 2486 |
+
"content": "|<EXTRA_TOKENS_158>|",
|
| 2487 |
+
"lstrip": false,
|
| 2488 |
+
"normalized": false,
|
| 2489 |
+
"rstrip": false,
|
| 2490 |
+
"single_word": false,
|
| 2491 |
+
"special": true
|
| 2492 |
+
},
|
| 2493 |
+
"151954": {
|
| 2494 |
+
"content": "|<EXTRA_TOKENS_159>|",
|
| 2495 |
+
"lstrip": false,
|
| 2496 |
+
"normalized": false,
|
| 2497 |
+
"rstrip": false,
|
| 2498 |
+
"single_word": false,
|
| 2499 |
+
"special": true
|
| 2500 |
+
},
|
| 2501 |
+
"151955": {
|
| 2502 |
+
"content": "|<EXTRA_TOKENS_160>|",
|
| 2503 |
+
"lstrip": false,
|
| 2504 |
+
"normalized": false,
|
| 2505 |
+
"rstrip": false,
|
| 2506 |
+
"single_word": false,
|
| 2507 |
+
"special": true
|
| 2508 |
+
},
|
| 2509 |
+
"151956": {
|
| 2510 |
+
"content": "|<EXTRA_TOKENS_161>|",
|
| 2511 |
+
"lstrip": false,
|
| 2512 |
+
"normalized": false,
|
| 2513 |
+
"rstrip": false,
|
| 2514 |
+
"single_word": false,
|
| 2515 |
+
"special": true
|
| 2516 |
+
},
|
| 2517 |
+
"151957": {
|
| 2518 |
+
"content": "|<EXTRA_TOKENS_162>|",
|
| 2519 |
+
"lstrip": false,
|
| 2520 |
+
"normalized": false,
|
| 2521 |
+
"rstrip": false,
|
| 2522 |
+
"single_word": false,
|
| 2523 |
+
"special": true
|
| 2524 |
+
},
|
| 2525 |
+
"151958": {
|
| 2526 |
+
"content": "|<EXTRA_TOKENS_163>|",
|
| 2527 |
+
"lstrip": false,
|
| 2528 |
+
"normalized": false,
|
| 2529 |
+
"rstrip": false,
|
| 2530 |
+
"single_word": false,
|
| 2531 |
+
"special": true
|
| 2532 |
+
},
|
| 2533 |
+
"151959": {
|
| 2534 |
+
"content": "|<EXTRA_TOKENS_164>|",
|
| 2535 |
+
"lstrip": false,
|
| 2536 |
+
"normalized": false,
|
| 2537 |
+
"rstrip": false,
|
| 2538 |
+
"single_word": false,
|
| 2539 |
+
"special": true
|
| 2540 |
+
},
|
| 2541 |
+
"151960": {
|
| 2542 |
+
"content": "|<EXTRA_TOKENS_165>|",
|
| 2543 |
+
"lstrip": false,
|
| 2544 |
+
"normalized": false,
|
| 2545 |
+
"rstrip": false,
|
| 2546 |
+
"single_word": false,
|
| 2547 |
+
"special": true
|
| 2548 |
+
},
|
| 2549 |
+
"151961": {
|
| 2550 |
+
"content": "|<EXTRA_TOKENS_166>|",
|
| 2551 |
+
"lstrip": false,
|
| 2552 |
+
"normalized": false,
|
| 2553 |
+
"rstrip": false,
|
| 2554 |
+
"single_word": false,
|
| 2555 |
+
"special": true
|
| 2556 |
+
},
|
| 2557 |
+
"151962": {
|
| 2558 |
+
"content": "|<EXTRA_TOKENS_167>|",
|
| 2559 |
+
"lstrip": false,
|
| 2560 |
+
"normalized": false,
|
| 2561 |
+
"rstrip": false,
|
| 2562 |
+
"single_word": false,
|
| 2563 |
+
"special": true
|
| 2564 |
+
},
|
| 2565 |
+
"151963": {
|
| 2566 |
+
"content": "|<EXTRA_TOKENS_168>|",
|
| 2567 |
+
"lstrip": false,
|
| 2568 |
+
"normalized": false,
|
| 2569 |
+
"rstrip": false,
|
| 2570 |
+
"single_word": false,
|
| 2571 |
+
"special": true
|
| 2572 |
+
},
|
| 2573 |
+
"151964": {
|
| 2574 |
+
"content": "|<EXTRA_TOKENS_169>|",
|
| 2575 |
+
"lstrip": false,
|
| 2576 |
+
"normalized": false,
|
| 2577 |
+
"rstrip": false,
|
| 2578 |
+
"single_word": false,
|
| 2579 |
+
"special": true
|
| 2580 |
+
},
|
| 2581 |
+
"151965": {
|
| 2582 |
+
"content": "|<EXTRA_TOKENS_170>|",
|
| 2583 |
+
"lstrip": false,
|
| 2584 |
+
"normalized": false,
|
| 2585 |
+
"rstrip": false,
|
| 2586 |
+
"single_word": false,
|
| 2587 |
+
"special": true
|
| 2588 |
+
},
|
| 2589 |
+
"151966": {
|
| 2590 |
+
"content": "|<EXTRA_TOKENS_171>|",
|
| 2591 |
+
"lstrip": false,
|
| 2592 |
+
"normalized": false,
|
| 2593 |
+
"rstrip": false,
|
| 2594 |
+
"single_word": false,
|
| 2595 |
+
"special": true
|
| 2596 |
+
},
|
| 2597 |
+
"151967": {
|
| 2598 |
+
"content": "|<EXTRA_TOKENS_172>|",
|
| 2599 |
+
"lstrip": false,
|
| 2600 |
+
"normalized": false,
|
| 2601 |
+
"rstrip": false,
|
| 2602 |
+
"single_word": false,
|
| 2603 |
+
"special": true
|
| 2604 |
+
},
|
| 2605 |
+
"151968": {
|
| 2606 |
+
"content": "|<EXTRA_TOKENS_173>|",
|
| 2607 |
+
"lstrip": false,
|
| 2608 |
+
"normalized": false,
|
| 2609 |
+
"rstrip": false,
|
| 2610 |
+
"single_word": false,
|
| 2611 |
+
"special": true
|
| 2612 |
+
},
|
| 2613 |
+
"151969": {
|
| 2614 |
+
"content": "|<EXTRA_TOKENS_174>|",
|
| 2615 |
+
"lstrip": false,
|
| 2616 |
+
"normalized": false,
|
| 2617 |
+
"rstrip": false,
|
| 2618 |
+
"single_word": false,
|
| 2619 |
+
"special": true
|
| 2620 |
+
},
|
| 2621 |
+
"151970": {
|
| 2622 |
+
"content": "|<EXTRA_TOKENS_175>|",
|
| 2623 |
+
"lstrip": false,
|
| 2624 |
+
"normalized": false,
|
| 2625 |
+
"rstrip": false,
|
| 2626 |
+
"single_word": false,
|
| 2627 |
+
"special": true
|
| 2628 |
+
},
|
| 2629 |
+
"151971": {
|
| 2630 |
+
"content": "|<EXTRA_TOKENS_176>|",
|
| 2631 |
+
"lstrip": false,
|
| 2632 |
+
"normalized": false,
|
| 2633 |
+
"rstrip": false,
|
| 2634 |
+
"single_word": false,
|
| 2635 |
+
"special": true
|
| 2636 |
+
},
|
| 2637 |
+
"151972": {
|
| 2638 |
+
"content": "|<EXTRA_TOKENS_177>|",
|
| 2639 |
+
"lstrip": false,
|
| 2640 |
+
"normalized": false,
|
| 2641 |
+
"rstrip": false,
|
| 2642 |
+
"single_word": false,
|
| 2643 |
+
"special": true
|
| 2644 |
+
},
|
| 2645 |
+
"151973": {
|
| 2646 |
+
"content": "|<EXTRA_TOKENS_178>|",
|
| 2647 |
+
"lstrip": false,
|
| 2648 |
+
"normalized": false,
|
| 2649 |
+
"rstrip": false,
|
| 2650 |
+
"single_word": false,
|
| 2651 |
+
"special": true
|
| 2652 |
+
},
|
| 2653 |
+
"151974": {
|
| 2654 |
+
"content": "|<EXTRA_TOKENS_179>|",
|
| 2655 |
+
"lstrip": false,
|
| 2656 |
+
"normalized": false,
|
| 2657 |
+
"rstrip": false,
|
| 2658 |
+
"single_word": false,
|
| 2659 |
+
"special": true
|
| 2660 |
+
},
|
| 2661 |
+
"151975": {
|
| 2662 |
+
"content": "|<EXTRA_TOKENS_180>|",
|
| 2663 |
+
"lstrip": false,
|
| 2664 |
+
"normalized": false,
|
| 2665 |
+
"rstrip": false,
|
| 2666 |
+
"single_word": false,
|
| 2667 |
+
"special": true
|
| 2668 |
+
},
|
| 2669 |
+
"151976": {
|
| 2670 |
+
"content": "|<EXTRA_TOKENS_181>|",
|
| 2671 |
+
"lstrip": false,
|
| 2672 |
+
"normalized": false,
|
| 2673 |
+
"rstrip": false,
|
| 2674 |
+
"single_word": false,
|
| 2675 |
+
"special": true
|
| 2676 |
+
},
|
| 2677 |
+
"151977": {
|
| 2678 |
+
"content": "|<EXTRA_TOKENS_182>|",
|
| 2679 |
+
"lstrip": false,
|
| 2680 |
+
"normalized": false,
|
| 2681 |
+
"rstrip": false,
|
| 2682 |
+
"single_word": false,
|
| 2683 |
+
"special": true
|
| 2684 |
+
},
|
| 2685 |
+
"151978": {
|
| 2686 |
+
"content": "|<EXTRA_TOKENS_183>|",
|
| 2687 |
+
"lstrip": false,
|
| 2688 |
+
"normalized": false,
|
| 2689 |
+
"rstrip": false,
|
| 2690 |
+
"single_word": false,
|
| 2691 |
+
"special": true
|
| 2692 |
+
},
|
| 2693 |
+
"151979": {
|
| 2694 |
+
"content": "|<EXTRA_TOKENS_184>|",
|
| 2695 |
+
"lstrip": false,
|
| 2696 |
+
"normalized": false,
|
| 2697 |
+
"rstrip": false,
|
| 2698 |
+
"single_word": false,
|
| 2699 |
+
"special": true
|
| 2700 |
+
},
|
| 2701 |
+
"151980": {
|
| 2702 |
+
"content": "|<EXTRA_TOKENS_185>|",
|
| 2703 |
+
"lstrip": false,
|
| 2704 |
+
"normalized": false,
|
| 2705 |
+
"rstrip": false,
|
| 2706 |
+
"single_word": false,
|
| 2707 |
+
"special": true
|
| 2708 |
+
},
|
| 2709 |
+
"151981": {
|
| 2710 |
+
"content": "|<EXTRA_TOKENS_186>|",
|
| 2711 |
+
"lstrip": false,
|
| 2712 |
+
"normalized": false,
|
| 2713 |
+
"rstrip": false,
|
| 2714 |
+
"single_word": false,
|
| 2715 |
+
"special": true
|
| 2716 |
+
},
|
| 2717 |
+
"151982": {
|
| 2718 |
+
"content": "|<EXTRA_TOKENS_187>|",
|
| 2719 |
+
"lstrip": false,
|
| 2720 |
+
"normalized": false,
|
| 2721 |
+
"rstrip": false,
|
| 2722 |
+
"single_word": false,
|
| 2723 |
+
"special": true
|
| 2724 |
+
},
|
| 2725 |
+
"151983": {
|
| 2726 |
+
"content": "|<EXTRA_TOKENS_188>|",
|
| 2727 |
+
"lstrip": false,
|
| 2728 |
+
"normalized": false,
|
| 2729 |
+
"rstrip": false,
|
| 2730 |
+
"single_word": false,
|
| 2731 |
+
"special": true
|
| 2732 |
+
},
|
| 2733 |
+
"151984": {
|
| 2734 |
+
"content": "|<EXTRA_TOKENS_189>|",
|
| 2735 |
+
"lstrip": false,
|
| 2736 |
+
"normalized": false,
|
| 2737 |
+
"rstrip": false,
|
| 2738 |
+
"single_word": false,
|
| 2739 |
+
"special": true
|
| 2740 |
+
},
|
| 2741 |
+
"151985": {
|
| 2742 |
+
"content": "|<EXTRA_TOKENS_190>|",
|
| 2743 |
+
"lstrip": false,
|
| 2744 |
+
"normalized": false,
|
| 2745 |
+
"rstrip": false,
|
| 2746 |
+
"single_word": false,
|
| 2747 |
+
"special": true
|
| 2748 |
+
},
|
| 2749 |
+
"151986": {
|
| 2750 |
+
"content": "|<EXTRA_TOKENS_191>|",
|
| 2751 |
+
"lstrip": false,
|
| 2752 |
+
"normalized": false,
|
| 2753 |
+
"rstrip": false,
|
| 2754 |
+
"single_word": false,
|
| 2755 |
+
"special": true
|
| 2756 |
+
},
|
| 2757 |
+
"151987": {
|
| 2758 |
+
"content": "|<EXTRA_TOKENS_192>|",
|
| 2759 |
+
"lstrip": false,
|
| 2760 |
+
"normalized": false,
|
| 2761 |
+
"rstrip": false,
|
| 2762 |
+
"single_word": false,
|
| 2763 |
+
"special": true
|
| 2764 |
+
},
|
| 2765 |
+
"151988": {
|
| 2766 |
+
"content": "|<EXTRA_TOKENS_193>|",
|
| 2767 |
+
"lstrip": false,
|
| 2768 |
+
"normalized": false,
|
| 2769 |
+
"rstrip": false,
|
| 2770 |
+
"single_word": false,
|
| 2771 |
+
"special": true
|
| 2772 |
+
},
|
| 2773 |
+
"151989": {
|
| 2774 |
+
"content": "|<EXTRA_TOKENS_194>|",
|
| 2775 |
+
"lstrip": false,
|
| 2776 |
+
"normalized": false,
|
| 2777 |
+
"rstrip": false,
|
| 2778 |
+
"single_word": false,
|
| 2779 |
+
"special": true
|
| 2780 |
+
},
|
| 2781 |
+
"151990": {
|
| 2782 |
+
"content": "|<EXTRA_TOKENS_195>|",
|
| 2783 |
+
"lstrip": false,
|
| 2784 |
+
"normalized": false,
|
| 2785 |
+
"rstrip": false,
|
| 2786 |
+
"single_word": false,
|
| 2787 |
+
"special": true
|
| 2788 |
+
},
|
| 2789 |
+
"151991": {
|
| 2790 |
+
"content": "|<EXTRA_TOKENS_196>|",
|
| 2791 |
+
"lstrip": false,
|
| 2792 |
+
"normalized": false,
|
| 2793 |
+
"rstrip": false,
|
| 2794 |
+
"single_word": false,
|
| 2795 |
+
"special": true
|
| 2796 |
+
},
|
| 2797 |
+
"151992": {
|
| 2798 |
+
"content": "|<EXTRA_TOKENS_197>|",
|
| 2799 |
+
"lstrip": false,
|
| 2800 |
+
"normalized": false,
|
| 2801 |
+
"rstrip": false,
|
| 2802 |
+
"single_word": false,
|
| 2803 |
+
"special": true
|
| 2804 |
+
},
|
| 2805 |
+
"151993": {
|
| 2806 |
+
"content": "|<EXTRA_TOKENS_198>|",
|
| 2807 |
+
"lstrip": false,
|
| 2808 |
+
"normalized": false,
|
| 2809 |
+
"rstrip": false,
|
| 2810 |
+
"single_word": false,
|
| 2811 |
+
"special": true
|
| 2812 |
+
},
|
| 2813 |
+
"151994": {
|
| 2814 |
+
"content": "|<EXTRA_TOKENS_199>|",
|
| 2815 |
+
"lstrip": false,
|
| 2816 |
+
"normalized": false,
|
| 2817 |
+
"rstrip": false,
|
| 2818 |
+
"single_word": false,
|
| 2819 |
+
"special": true
|
| 2820 |
+
},
|
| 2821 |
+
"151995": {
|
| 2822 |
+
"content": "|<EXTRA_TOKENS_200>|",
|
| 2823 |
+
"lstrip": false,
|
| 2824 |
+
"normalized": false,
|
| 2825 |
+
"rstrip": false,
|
| 2826 |
+
"single_word": false,
|
| 2827 |
+
"special": true
|
| 2828 |
+
},
|
| 2829 |
+
"151996": {
|
| 2830 |
+
"content": "|<EXTRA_TOKENS_201>|",
|
| 2831 |
+
"lstrip": false,
|
| 2832 |
+
"normalized": false,
|
| 2833 |
+
"rstrip": false,
|
| 2834 |
+
"single_word": false,
|
| 2835 |
+
"special": true
|
| 2836 |
+
},
|
| 2837 |
+
"151997": {
|
| 2838 |
+
"content": "|<EXTRA_TOKENS_202>|",
|
| 2839 |
+
"lstrip": false,
|
| 2840 |
+
"normalized": false,
|
| 2841 |
+
"rstrip": false,
|
| 2842 |
+
"single_word": false,
|
| 2843 |
+
"special": true
|
| 2844 |
+
},
|
| 2845 |
+
"151998": {
|
| 2846 |
+
"content": "|<EXTRA_TOKENS_203>|",
|
| 2847 |
+
"lstrip": false,
|
| 2848 |
+
"normalized": false,
|
| 2849 |
+
"rstrip": false,
|
| 2850 |
+
"single_word": false,
|
| 2851 |
+
"special": true
|
| 2852 |
+
},
|
| 2853 |
+
"151999": {
|
| 2854 |
+
"content": "|<EXTRA_TOKENS_204>|",
|
| 2855 |
+
"lstrip": false,
|
| 2856 |
+
"normalized": false,
|
| 2857 |
+
"rstrip": false,
|
| 2858 |
+
"single_word": false,
|
| 2859 |
+
"special": true
|
| 2860 |
+
},
|
| 2861 |
+
"152000": {
|
| 2862 |
+
"content": "|<EXTRA_TOKENS_205>|",
|
| 2863 |
+
"lstrip": false,
|
| 2864 |
+
"normalized": false,
|
| 2865 |
+
"rstrip": false,
|
| 2866 |
+
"single_word": false,
|
| 2867 |
+
"special": true
|
| 2868 |
+
},
|
| 2869 |
+
"152001": {
|
| 2870 |
+
"content": "|<EXTRA_TOKENS_206>|",
|
| 2871 |
+
"lstrip": false,
|
| 2872 |
+
"normalized": false,
|
| 2873 |
+
"rstrip": false,
|
| 2874 |
+
"single_word": false,
|
| 2875 |
+
"special": true
|
| 2876 |
+
},
|
| 2877 |
+
"152002": {
|
| 2878 |
+
"content": "|<EXTRA_TOKENS_207>|",
|
| 2879 |
+
"lstrip": false,
|
| 2880 |
+
"normalized": false,
|
| 2881 |
+
"rstrip": false,
|
| 2882 |
+
"single_word": false,
|
| 2883 |
+
"special": true
|
| 2884 |
+
},
|
| 2885 |
+
"152003": {
|
| 2886 |
+
"content": "|<EXTRA_TOKENS_208>|",
|
| 2887 |
+
"lstrip": false,
|
| 2888 |
+
"normalized": false,
|
| 2889 |
+
"rstrip": false,
|
| 2890 |
+
"single_word": false,
|
| 2891 |
+
"special": true
|
| 2892 |
+
},
|
| 2893 |
+
"152004": {
|
| 2894 |
+
"content": "|<EXTRA_TOKENS_209>|",
|
| 2895 |
+
"lstrip": false,
|
| 2896 |
+
"normalized": false,
|
| 2897 |
+
"rstrip": false,
|
| 2898 |
+
"single_word": false,
|
| 2899 |
+
"special": true
|
| 2900 |
+
},
|
| 2901 |
+
"152005": {
|
| 2902 |
+
"content": "|<EXTRA_TOKENS_210>|",
|
| 2903 |
+
"lstrip": false,
|
| 2904 |
+
"normalized": false,
|
| 2905 |
+
"rstrip": false,
|
| 2906 |
+
"single_word": false,
|
| 2907 |
+
"special": true
|
| 2908 |
+
},
|
| 2909 |
+
"152006": {
|
| 2910 |
+
"content": "|<EXTRA_TOKENS_211>|",
|
| 2911 |
+
"lstrip": false,
|
| 2912 |
+
"normalized": false,
|
| 2913 |
+
"rstrip": false,
|
| 2914 |
+
"single_word": false,
|
| 2915 |
+
"special": true
|
| 2916 |
+
},
|
| 2917 |
+
"152007": {
|
| 2918 |
+
"content": "|<EXTRA_TOKENS_212>|",
|
| 2919 |
+
"lstrip": false,
|
| 2920 |
+
"normalized": false,
|
| 2921 |
+
"rstrip": false,
|
| 2922 |
+
"single_word": false,
|
| 2923 |
+
"special": true
|
| 2924 |
+
},
|
| 2925 |
+
"152008": {
|
| 2926 |
+
"content": "|<EXTRA_TOKENS_213>|",
|
| 2927 |
+
"lstrip": false,
|
| 2928 |
+
"normalized": false,
|
| 2929 |
+
"rstrip": false,
|
| 2930 |
+
"single_word": false,
|
| 2931 |
+
"special": true
|
| 2932 |
+
},
|
| 2933 |
+
"152009": {
|
| 2934 |
+
"content": "|<EXTRA_TOKENS_214>|",
|
| 2935 |
+
"lstrip": false,
|
| 2936 |
+
"normalized": false,
|
| 2937 |
+
"rstrip": false,
|
| 2938 |
+
"single_word": false,
|
| 2939 |
+
"special": true
|
| 2940 |
+
},
|
| 2941 |
+
"152010": {
|
| 2942 |
+
"content": "|<EXTRA_TOKENS_215>|",
|
| 2943 |
+
"lstrip": false,
|
| 2944 |
+
"normalized": false,
|
| 2945 |
+
"rstrip": false,
|
| 2946 |
+
"single_word": false,
|
| 2947 |
+
"special": true
|
| 2948 |
+
},
|
| 2949 |
+
"152011": {
|
| 2950 |
+
"content": "|<EXTRA_TOKENS_216>|",
|
| 2951 |
+
"lstrip": false,
|
| 2952 |
+
"normalized": false,
|
| 2953 |
+
"rstrip": false,
|
| 2954 |
+
"single_word": false,
|
| 2955 |
+
"special": true
|
| 2956 |
+
},
|
| 2957 |
+
"152012": {
|
| 2958 |
+
"content": "|<EXTRA_TOKENS_217>|",
|
| 2959 |
+
"lstrip": false,
|
| 2960 |
+
"normalized": false,
|
| 2961 |
+
"rstrip": false,
|
| 2962 |
+
"single_word": false,
|
| 2963 |
+
"special": true
|
| 2964 |
+
},
|
| 2965 |
+
"152013": {
|
| 2966 |
+
"content": "|<EXTRA_TOKENS_218>|",
|
| 2967 |
+
"lstrip": false,
|
| 2968 |
+
"normalized": false,
|
| 2969 |
+
"rstrip": false,
|
| 2970 |
+
"single_word": false,
|
| 2971 |
+
"special": true
|
| 2972 |
+
},
|
| 2973 |
+
"152014": {
|
| 2974 |
+
"content": "|<EXTRA_TOKENS_219>|",
|
| 2975 |
+
"lstrip": false,
|
| 2976 |
+
"normalized": false,
|
| 2977 |
+
"rstrip": false,
|
| 2978 |
+
"single_word": false,
|
| 2979 |
+
"special": true
|
| 2980 |
+
},
|
| 2981 |
+
"152015": {
|
| 2982 |
+
"content": "|<EXTRA_TOKENS_220>|",
|
| 2983 |
+
"lstrip": false,
|
| 2984 |
+
"normalized": false,
|
| 2985 |
+
"rstrip": false,
|
| 2986 |
+
"single_word": false,
|
| 2987 |
+
"special": true
|
| 2988 |
+
},
|
| 2989 |
+
"152016": {
|
| 2990 |
+
"content": "|<EXTRA_TOKENS_221>|",
|
| 2991 |
+
"lstrip": false,
|
| 2992 |
+
"normalized": false,
|
| 2993 |
+
"rstrip": false,
|
| 2994 |
+
"single_word": false,
|
| 2995 |
+
"special": true
|
| 2996 |
+
},
|
| 2997 |
+
"152017": {
|
| 2998 |
+
"content": "|<EXTRA_TOKENS_222>|",
|
| 2999 |
+
"lstrip": false,
|
| 3000 |
+
"normalized": false,
|
| 3001 |
+
"rstrip": false,
|
| 3002 |
+
"single_word": false,
|
| 3003 |
+
"special": true
|
| 3004 |
+
},
|
| 3005 |
+
"152018": {
|
| 3006 |
+
"content": "|<EXTRA_TOKENS_223>|",
|
| 3007 |
+
"lstrip": false,
|
| 3008 |
+
"normalized": false,
|
| 3009 |
+
"rstrip": false,
|
| 3010 |
+
"single_word": false,
|
| 3011 |
+
"special": true
|
| 3012 |
+
},
|
| 3013 |
+
"152019": {
|
| 3014 |
+
"content": "|<EXTRA_TOKENS_224>|",
|
| 3015 |
+
"lstrip": false,
|
| 3016 |
+
"normalized": false,
|
| 3017 |
+
"rstrip": false,
|
| 3018 |
+
"single_word": false,
|
| 3019 |
+
"special": true
|
| 3020 |
+
},
|
| 3021 |
+
"152020": {
|
| 3022 |
+
"content": "|<EXTRA_TOKENS_225>|",
|
| 3023 |
+
"lstrip": false,
|
| 3024 |
+
"normalized": false,
|
| 3025 |
+
"rstrip": false,
|
| 3026 |
+
"single_word": false,
|
| 3027 |
+
"special": true
|
| 3028 |
+
},
|
| 3029 |
+
"152021": {
|
| 3030 |
+
"content": "|<EXTRA_TOKENS_226>|",
|
| 3031 |
+
"lstrip": false,
|
| 3032 |
+
"normalized": false,
|
| 3033 |
+
"rstrip": false,
|
| 3034 |
+
"single_word": false,
|
| 3035 |
+
"special": true
|
| 3036 |
+
},
|
| 3037 |
+
"152022": {
|
| 3038 |
+
"content": "|<EXTRA_TOKENS_227>|",
|
| 3039 |
+
"lstrip": false,
|
| 3040 |
+
"normalized": false,
|
| 3041 |
+
"rstrip": false,
|
| 3042 |
+
"single_word": false,
|
| 3043 |
+
"special": true
|
| 3044 |
+
},
|
| 3045 |
+
"152023": {
|
| 3046 |
+
"content": "|<EXTRA_TOKENS_228>|",
|
| 3047 |
+
"lstrip": false,
|
| 3048 |
+
"normalized": false,
|
| 3049 |
+
"rstrip": false,
|
| 3050 |
+
"single_word": false,
|
| 3051 |
+
"special": true
|
| 3052 |
+
},
|
| 3053 |
+
"152024": {
|
| 3054 |
+
"content": "|<EXTRA_TOKENS_229>|",
|
| 3055 |
+
"lstrip": false,
|
| 3056 |
+
"normalized": false,
|
| 3057 |
+
"rstrip": false,
|
| 3058 |
+
"single_word": false,
|
| 3059 |
+
"special": true
|
| 3060 |
+
},
|
| 3061 |
+
"152025": {
|
| 3062 |
+
"content": "|<EXTRA_TOKENS_230>|",
|
| 3063 |
+
"lstrip": false,
|
| 3064 |
+
"normalized": false,
|
| 3065 |
+
"rstrip": false,
|
| 3066 |
+
"single_word": false,
|
| 3067 |
+
"special": true
|
| 3068 |
+
},
|
| 3069 |
+
"152026": {
|
| 3070 |
+
"content": "|<EXTRA_TOKENS_231>|",
|
| 3071 |
+
"lstrip": false,
|
| 3072 |
+
"normalized": false,
|
| 3073 |
+
"rstrip": false,
|
| 3074 |
+
"single_word": false,
|
| 3075 |
+
"special": true
|
| 3076 |
+
},
|
| 3077 |
+
"152027": {
|
| 3078 |
+
"content": "|<EXTRA_TOKENS_232>|",
|
| 3079 |
+
"lstrip": false,
|
| 3080 |
+
"normalized": false,
|
| 3081 |
+
"rstrip": false,
|
| 3082 |
+
"single_word": false,
|
| 3083 |
+
"special": true
|
| 3084 |
+
},
|
| 3085 |
+
"152028": {
|
| 3086 |
+
"content": "|<EXTRA_TOKENS_233>|",
|
| 3087 |
+
"lstrip": false,
|
| 3088 |
+
"normalized": false,
|
| 3089 |
+
"rstrip": false,
|
| 3090 |
+
"single_word": false,
|
| 3091 |
+
"special": true
|
| 3092 |
+
},
|
| 3093 |
+
"152029": {
|
| 3094 |
+
"content": "|<EXTRA_TOKENS_234>|",
|
| 3095 |
+
"lstrip": false,
|
| 3096 |
+
"normalized": false,
|
| 3097 |
+
"rstrip": false,
|
| 3098 |
+
"single_word": false,
|
| 3099 |
+
"special": true
|
| 3100 |
+
},
|
| 3101 |
+
"152030": {
|
| 3102 |
+
"content": "|<EXTRA_TOKENS_235>|",
|
| 3103 |
+
"lstrip": false,
|
| 3104 |
+
"normalized": false,
|
| 3105 |
+
"rstrip": false,
|
| 3106 |
+
"single_word": false,
|
| 3107 |
+
"special": true
|
| 3108 |
+
},
|
| 3109 |
+
"152031": {
|
| 3110 |
+
"content": "|<EXTRA_TOKENS_236>|",
|
| 3111 |
+
"lstrip": false,
|
| 3112 |
+
"normalized": false,
|
| 3113 |
+
"rstrip": false,
|
| 3114 |
+
"single_word": false,
|
| 3115 |
+
"special": true
|
| 3116 |
+
},
|
| 3117 |
+
"152032": {
|
| 3118 |
+
"content": "|<EXTRA_TOKENS_237>|",
|
| 3119 |
+
"lstrip": false,
|
| 3120 |
+
"normalized": false,
|
| 3121 |
+
"rstrip": false,
|
| 3122 |
+
"single_word": false,
|
| 3123 |
+
"special": true
|
| 3124 |
+
},
|
| 3125 |
+
"152033": {
|
| 3126 |
+
"content": "|<EXTRA_TOKENS_238>|",
|
| 3127 |
+
"lstrip": false,
|
| 3128 |
+
"normalized": false,
|
| 3129 |
+
"rstrip": false,
|
| 3130 |
+
"single_word": false,
|
| 3131 |
+
"special": true
|
| 3132 |
+
},
|
| 3133 |
+
"152034": {
|
| 3134 |
+
"content": "|<EXTRA_TOKENS_239>|",
|
| 3135 |
+
"lstrip": false,
|
| 3136 |
+
"normalized": false,
|
| 3137 |
+
"rstrip": false,
|
| 3138 |
+
"single_word": false,
|
| 3139 |
+
"special": true
|
| 3140 |
+
},
|
| 3141 |
+
"152035": {
|
| 3142 |
+
"content": "|<EXTRA_TOKENS_240>|",
|
| 3143 |
+
"lstrip": false,
|
| 3144 |
+
"normalized": false,
|
| 3145 |
+
"rstrip": false,
|
| 3146 |
+
"single_word": false,
|
| 3147 |
+
"special": true
|
| 3148 |
+
},
|
| 3149 |
+
"152036": {
|
| 3150 |
+
"content": "|<EXTRA_TOKENS_241>|",
|
| 3151 |
+
"lstrip": false,
|
| 3152 |
+
"normalized": false,
|
| 3153 |
+
"rstrip": false,
|
| 3154 |
+
"single_word": false,
|
| 3155 |
+
"special": true
|
| 3156 |
+
},
|
| 3157 |
+
"152037": {
|
| 3158 |
+
"content": "|<EXTRA_TOKENS_242>|",
|
| 3159 |
+
"lstrip": false,
|
| 3160 |
+
"normalized": false,
|
| 3161 |
+
"rstrip": false,
|
| 3162 |
+
"single_word": false,
|
| 3163 |
+
"special": true
|
| 3164 |
+
},
|
| 3165 |
+
"152038": {
|
| 3166 |
+
"content": "|<EXTRA_TOKENS_243>|",
|
| 3167 |
+
"lstrip": false,
|
| 3168 |
+
"normalized": false,
|
| 3169 |
+
"rstrip": false,
|
| 3170 |
+
"single_word": false,
|
| 3171 |
+
"special": true
|
| 3172 |
+
},
|
| 3173 |
+
"152039": {
|
| 3174 |
+
"content": "|<EXTRA_TOKENS_244>|",
|
| 3175 |
+
"lstrip": false,
|
| 3176 |
+
"normalized": false,
|
| 3177 |
+
"rstrip": false,
|
| 3178 |
+
"single_word": false,
|
| 3179 |
+
"special": true
|
| 3180 |
+
},
|
| 3181 |
+
"152040": {
|
| 3182 |
+
"content": "|<EXTRA_TOKENS_245>|",
|
| 3183 |
+
"lstrip": false,
|
| 3184 |
+
"normalized": false,
|
| 3185 |
+
"rstrip": false,
|
| 3186 |
+
"single_word": false,
|
| 3187 |
+
"special": true
|
| 3188 |
+
},
|
| 3189 |
+
"152041": {
|
| 3190 |
+
"content": "|<EXTRA_TOKENS_246>|",
|
| 3191 |
+
"lstrip": false,
|
| 3192 |
+
"normalized": false,
|
| 3193 |
+
"rstrip": false,
|
| 3194 |
+
"single_word": false,
|
| 3195 |
+
"special": true
|
| 3196 |
+
},
|
| 3197 |
+
"152042": {
|
| 3198 |
+
"content": "|<EXTRA_TOKENS_247>|",
|
| 3199 |
+
"lstrip": false,
|
| 3200 |
+
"normalized": false,
|
| 3201 |
+
"rstrip": false,
|
| 3202 |
+
"single_word": false,
|
| 3203 |
+
"special": true
|
| 3204 |
+
},
|
| 3205 |
+
"152043": {
|
| 3206 |
+
"content": "|<EXTRA_TOKENS_248>|",
|
| 3207 |
+
"lstrip": false,
|
| 3208 |
+
"normalized": false,
|
| 3209 |
+
"rstrip": false,
|
| 3210 |
+
"single_word": false,
|
| 3211 |
+
"special": true
|
| 3212 |
+
},
|
| 3213 |
+
"152044": {
|
| 3214 |
+
"content": "|<EXTRA_TOKENS_249>|",
|
| 3215 |
+
"lstrip": false,
|
| 3216 |
+
"normalized": false,
|
| 3217 |
+
"rstrip": false,
|
| 3218 |
+
"single_word": false,
|
| 3219 |
+
"special": true
|
| 3220 |
+
},
|
| 3221 |
+
"152045": {
|
| 3222 |
+
"content": "|<EXTRA_TOKENS_250>|",
|
| 3223 |
+
"lstrip": false,
|
| 3224 |
+
"normalized": false,
|
| 3225 |
+
"rstrip": false,
|
| 3226 |
+
"single_word": false,
|
| 3227 |
+
"special": true
|
| 3228 |
+
},
|
| 3229 |
+
"152046": {
|
| 3230 |
+
"content": "|<EXTRA_TOKENS_251>|",
|
| 3231 |
+
"lstrip": false,
|
| 3232 |
+
"normalized": false,
|
| 3233 |
+
"rstrip": false,
|
| 3234 |
+
"single_word": false,
|
| 3235 |
+
"special": true
|
| 3236 |
+
},
|
| 3237 |
+
"152047": {
|
| 3238 |
+
"content": "|<EXTRA_TOKENS_252>|",
|
| 3239 |
+
"lstrip": false,
|
| 3240 |
+
"normalized": false,
|
| 3241 |
+
"rstrip": false,
|
| 3242 |
+
"single_word": false,
|
| 3243 |
+
"special": true
|
| 3244 |
+
},
|
| 3245 |
+
"152048": {
|
| 3246 |
+
"content": "|<EXTRA_TOKENS_253>|",
|
| 3247 |
+
"lstrip": false,
|
| 3248 |
+
"normalized": false,
|
| 3249 |
+
"rstrip": false,
|
| 3250 |
+
"single_word": false,
|
| 3251 |
+
"special": true
|
| 3252 |
+
},
|
| 3253 |
+
"152049": {
|
| 3254 |
+
"content": "|<EXTRA_TOKENS_254>|",
|
| 3255 |
+
"lstrip": false,
|
| 3256 |
+
"normalized": false,
|
| 3257 |
+
"rstrip": false,
|
| 3258 |
+
"single_word": false,
|
| 3259 |
+
"special": true
|
| 3260 |
+
},
|
| 3261 |
+
"152050": {
|
| 3262 |
+
"content": "|<EXTRA_TOKENS_255>|",
|
| 3263 |
+
"lstrip": false,
|
| 3264 |
+
"normalized": false,
|
| 3265 |
+
"rstrip": false,
|
| 3266 |
+
"single_word": false,
|
| 3267 |
+
"special": true
|
| 3268 |
+
},
|
| 3269 |
+
"152051": {
|
| 3270 |
+
"content": "|<EXTRA_TOKENS_256>|",
|
| 3271 |
+
"lstrip": false,
|
| 3272 |
+
"normalized": false,
|
| 3273 |
+
"rstrip": false,
|
| 3274 |
+
"single_word": false,
|
| 3275 |
+
"special": true
|
| 3276 |
+
},
|
| 3277 |
+
"152052": {
|
| 3278 |
+
"content": "|<EXTRA_TOKENS_257>|",
|
| 3279 |
+
"lstrip": false,
|
| 3280 |
+
"normalized": false,
|
| 3281 |
+
"rstrip": false,
|
| 3282 |
+
"single_word": false,
|
| 3283 |
+
"special": true
|
| 3284 |
+
},
|
| 3285 |
+
"152053": {
|
| 3286 |
+
"content": "|<EXTRA_TOKENS_258>|",
|
| 3287 |
+
"lstrip": false,
|
| 3288 |
+
"normalized": false,
|
| 3289 |
+
"rstrip": false,
|
| 3290 |
+
"single_word": false,
|
| 3291 |
+
"special": true
|
| 3292 |
+
},
|
| 3293 |
+
"152054": {
|
| 3294 |
+
"content": "|<EXTRA_TOKENS_259>|",
|
| 3295 |
+
"lstrip": false,
|
| 3296 |
+
"normalized": false,
|
| 3297 |
+
"rstrip": false,
|
| 3298 |
+
"single_word": false,
|
| 3299 |
+
"special": true
|
| 3300 |
+
},
|
| 3301 |
+
"152055": {
|
| 3302 |
+
"content": "|<EXTRA_TOKENS_260>|",
|
| 3303 |
+
"lstrip": false,
|
| 3304 |
+
"normalized": false,
|
| 3305 |
+
"rstrip": false,
|
| 3306 |
+
"single_word": false,
|
| 3307 |
+
"special": true
|
| 3308 |
+
},
|
| 3309 |
+
"152056": {
|
| 3310 |
+
"content": "|<EXTRA_TOKENS_261>|",
|
| 3311 |
+
"lstrip": false,
|
| 3312 |
+
"normalized": false,
|
| 3313 |
+
"rstrip": false,
|
| 3314 |
+
"single_word": false,
|
| 3315 |
+
"special": true
|
| 3316 |
+
},
|
| 3317 |
+
"152057": {
|
| 3318 |
+
"content": "|<EXTRA_TOKENS_262>|",
|
| 3319 |
+
"lstrip": false,
|
| 3320 |
+
"normalized": false,
|
| 3321 |
+
"rstrip": false,
|
| 3322 |
+
"single_word": false,
|
| 3323 |
+
"special": true
|
| 3324 |
+
},
|
| 3325 |
+
"152058": {
|
| 3326 |
+
"content": "|<EXTRA_TOKENS_263>|",
|
| 3327 |
+
"lstrip": false,
|
| 3328 |
+
"normalized": false,
|
| 3329 |
+
"rstrip": false,
|
| 3330 |
+
"single_word": false,
|
| 3331 |
+
"special": true
|
| 3332 |
+
},
|
| 3333 |
+
"152059": {
|
| 3334 |
+
"content": "|<EXTRA_TOKENS_264>|",
|
| 3335 |
+
"lstrip": false,
|
| 3336 |
+
"normalized": false,
|
| 3337 |
+
"rstrip": false,
|
| 3338 |
+
"single_word": false,
|
| 3339 |
+
"special": true
|
| 3340 |
+
},
|
| 3341 |
+
"152060": {
|
| 3342 |
+
"content": "|<EXTRA_TOKENS_265>|",
|
| 3343 |
+
"lstrip": false,
|
| 3344 |
+
"normalized": false,
|
| 3345 |
+
"rstrip": false,
|
| 3346 |
+
"single_word": false,
|
| 3347 |
+
"special": true
|
| 3348 |
+
},
|
| 3349 |
+
"152061": {
|
| 3350 |
+
"content": "|<EXTRA_TOKENS_266>|",
|
| 3351 |
+
"lstrip": false,
|
| 3352 |
+
"normalized": false,
|
| 3353 |
+
"rstrip": false,
|
| 3354 |
+
"single_word": false,
|
| 3355 |
+
"special": true
|
| 3356 |
+
},
|
| 3357 |
+
"152062": {
|
| 3358 |
+
"content": "|<EXTRA_TOKENS_267>|",
|
| 3359 |
+
"lstrip": false,
|
| 3360 |
+
"normalized": false,
|
| 3361 |
+
"rstrip": false,
|
| 3362 |
+
"single_word": false,
|
| 3363 |
+
"special": true
|
| 3364 |
+
},
|
| 3365 |
+
"152063": {
|
| 3366 |
+
"content": "|<EXTRA_TOKENS_268>|",
|
| 3367 |
+
"lstrip": false,
|
| 3368 |
+
"normalized": false,
|
| 3369 |
+
"rstrip": false,
|
| 3370 |
+
"single_word": false,
|
| 3371 |
+
"special": true
|
| 3372 |
+
},
|
| 3373 |
+
"152064": {
|
| 3374 |
+
"content": "<im_start>",
|
| 3375 |
+
"lstrip": false,
|
| 3376 |
+
"normalized": false,
|
| 3377 |
+
"rstrip": false,
|
| 3378 |
+
"single_word": false,
|
| 3379 |
+
"special": true
|
| 3380 |
+
},
|
| 3381 |
+
"152065": {
|
| 3382 |
+
"content": "<im_end>",
|
| 3383 |
+
"lstrip": false,
|
| 3384 |
+
"normalized": false,
|
| 3385 |
+
"rstrip": false,
|
| 3386 |
+
"single_word": false,
|
| 3387 |
+
"special": true
|
| 3388 |
+
},
|
| 3389 |
+
"152066": {
|
| 3390 |
+
"content": "<im_patch>",
|
| 3391 |
+
"lstrip": false,
|
| 3392 |
+
"normalized": false,
|
| 3393 |
+
"rstrip": false,
|
| 3394 |
+
"single_word": false,
|
| 3395 |
+
"special": true
|
| 3396 |
+
},
|
| 3397 |
+
"152067": {
|
| 3398 |
+
"content": "<im_col>",
|
| 3399 |
+
"lstrip": false,
|
| 3400 |
+
"normalized": false,
|
| 3401 |
+
"rstrip": false,
|
| 3402 |
+
"single_word": false,
|
| 3403 |
+
"special": true
|
| 3404 |
+
},
|
| 3405 |
+
"152068": {
|
| 3406 |
+
"content": "<|image|>",
|
| 3407 |
+
"lstrip": false,
|
| 3408 |
+
"normalized": false,
|
| 3409 |
+
"rstrip": false,
|
| 3410 |
+
"single_word": false,
|
| 3411 |
+
"special": true
|
| 3412 |
+
},
|
| 3413 |
+
"152069": {
|
| 3414 |
+
"content": "<im_low>",
|
| 3415 |
+
"lstrip": false,
|
| 3416 |
+
"normalized": false,
|
| 3417 |
+
"rstrip": false,
|
| 3418 |
+
"single_word": false,
|
| 3419 |
+
"special": true
|
| 3420 |
+
}
|
| 3421 |
+
},
|
| 3422 |
+
"additional_special_tokens": [
|
| 3423 |
+
"|<EXTRA_TOKENS_0>|",
|
| 3424 |
+
"|<EXTRA_TOKENS_1>|",
|
| 3425 |
+
"|<EXTRA_TOKENS_2>|",
|
| 3426 |
+
"|<EXTRA_TOKENS_3>|",
|
| 3427 |
+
"|<EXTRA_TOKENS_4>|",
|
| 3428 |
+
"|<EXTRA_TOKENS_5>|",
|
| 3429 |
+
"|<EXTRA_TOKENS_6>|",
|
| 3430 |
+
"|<EXTRA_TOKENS_7>|",
|
| 3431 |
+
"|<EXTRA_TOKENS_8>|",
|
| 3432 |
+
"|<EXTRA_TOKENS_9>|",
|
| 3433 |
+
"|<EXTRA_TOKENS_10>|",
|
| 3434 |
+
"|<EXTRA_TOKENS_11>|",
|
| 3435 |
+
"|<EXTRA_TOKENS_12>|",
|
| 3436 |
+
"|<EXTRA_TOKENS_13>|",
|
| 3437 |
+
"|<EXTRA_TOKENS_14>|",
|
| 3438 |
+
"|<EXTRA_TOKENS_15>|",
|
| 3439 |
+
"|<EXTRA_TOKENS_16>|",
|
| 3440 |
+
"|<EXTRA_TOKENS_17>|",
|
| 3441 |
+
"|<EXTRA_TOKENS_18>|",
|
| 3442 |
+
"|<EXTRA_TOKENS_19>|",
|
| 3443 |
+
"|<EXTRA_TOKENS_20>|",
|
| 3444 |
+
"|<EXTRA_TOKENS_21>|",
|
| 3445 |
+
"|<EXTRA_TOKENS_22>|",
|
| 3446 |
+
"|<EXTRA_TOKENS_23>|",
|
| 3447 |
+
"|<EXTRA_TOKENS_24>|",
|
| 3448 |
+
"|<EXTRA_TOKENS_25>|",
|
| 3449 |
+
"|<EXTRA_TOKENS_26>|",
|
| 3450 |
+
"|<EXTRA_TOKENS_27>|",
|
| 3451 |
+
"|<EXTRA_TOKENS_28>|",
|
| 3452 |
+
"|<EXTRA_TOKENS_29>|",
|
| 3453 |
+
"|<EXTRA_TOKENS_30>|",
|
| 3454 |
+
"|<EXTRA_TOKENS_31>|",
|
| 3455 |
+
"|<EXTRA_TOKENS_32>|",
|
| 3456 |
+
"|<EXTRA_TOKENS_33>|",
|
| 3457 |
+
"|<EXTRA_TOKENS_34>|",
|
| 3458 |
+
"|<EXTRA_TOKENS_35>|",
|
| 3459 |
+
"|<EXTRA_TOKENS_36>|",
|
| 3460 |
+
"|<EXTRA_TOKENS_37>|",
|
| 3461 |
+
"|<EXTRA_TOKENS_38>|",
|
| 3462 |
+
"|<EXTRA_TOKENS_39>|",
|
| 3463 |
+
"|<EXTRA_TOKENS_40>|",
|
| 3464 |
+
"|<EXTRA_TOKENS_41>|",
|
| 3465 |
+
"|<EXTRA_TOKENS_42>|",
|
| 3466 |
+
"|<EXTRA_TOKENS_43>|",
|
| 3467 |
+
"|<EXTRA_TOKENS_44>|",
|
| 3468 |
+
"|<EXTRA_TOKENS_45>|",
|
| 3469 |
+
"|<EXTRA_TOKENS_46>|",
|
| 3470 |
+
"|<EXTRA_TOKENS_47>|",
|
| 3471 |
+
"|<EXTRA_TOKENS_48>|",
|
| 3472 |
+
"|<EXTRA_TOKENS_49>|",
|
| 3473 |
+
"|<EXTRA_TOKENS_50>|",
|
| 3474 |
+
"|<EXTRA_TOKENS_51>|",
|
| 3475 |
+
"|<EXTRA_TOKENS_52>|",
|
| 3476 |
+
"|<EXTRA_TOKENS_53>|",
|
| 3477 |
+
"|<EXTRA_TOKENS_54>|",
|
| 3478 |
+
"|<EXTRA_TOKENS_55>|",
|
| 3479 |
+
"|<EXTRA_TOKENS_56>|",
|
| 3480 |
+
"|<EXTRA_TOKENS_57>|",
|
| 3481 |
+
"|<EXTRA_TOKENS_58>|",
|
| 3482 |
+
"|<EXTRA_TOKENS_59>|",
|
| 3483 |
+
"|<EXTRA_TOKENS_60>|",
|
| 3484 |
+
"|<EXTRA_TOKENS_61>|",
|
| 3485 |
+
"|<EXTRA_TOKENS_62>|",
|
| 3486 |
+
"|<EXTRA_TOKENS_63>|",
|
| 3487 |
+
"|<EXTRA_TOKENS_64>|",
|
| 3488 |
+
"|<EXTRA_TOKENS_65>|",
|
| 3489 |
+
"|<EXTRA_TOKENS_66>|",
|
| 3490 |
+
"|<EXTRA_TOKENS_67>|",
|
| 3491 |
+
"|<EXTRA_TOKENS_68>|",
|
| 3492 |
+
"|<EXTRA_TOKENS_69>|",
|
| 3493 |
+
"|<EXTRA_TOKENS_70>|",
|
| 3494 |
+
"|<EXTRA_TOKENS_71>|",
|
| 3495 |
+
"|<EXTRA_TOKENS_72>|",
|
| 3496 |
+
"|<EXTRA_TOKENS_73>|",
|
| 3497 |
+
"|<EXTRA_TOKENS_74>|",
|
| 3498 |
+
"|<EXTRA_TOKENS_75>|",
|
| 3499 |
+
"|<EXTRA_TOKENS_76>|",
|
| 3500 |
+
"|<EXTRA_TOKENS_77>|",
|
| 3501 |
+
"|<EXTRA_TOKENS_78>|",
|
| 3502 |
+
"|<EXTRA_TOKENS_79>|",
|
| 3503 |
+
"|<EXTRA_TOKENS_80>|",
|
| 3504 |
+
"|<EXTRA_TOKENS_81>|",
|
| 3505 |
+
"|<EXTRA_TOKENS_82>|",
|
| 3506 |
+
"|<EXTRA_TOKENS_83>|",
|
| 3507 |
+
"|<EXTRA_TOKENS_84>|",
|
| 3508 |
+
"|<EXTRA_TOKENS_85>|",
|
| 3509 |
+
"|<EXTRA_TOKENS_86>|",
|
| 3510 |
+
"|<EXTRA_TOKENS_87>|",
|
| 3511 |
+
"|<EXTRA_TOKENS_88>|",
|
| 3512 |
+
"|<EXTRA_TOKENS_89>|",
|
| 3513 |
+
"|<EXTRA_TOKENS_90>|",
|
| 3514 |
+
"|<EXTRA_TOKENS_91>|",
|
| 3515 |
+
"|<EXTRA_TOKENS_92>|",
|
| 3516 |
+
"|<EXTRA_TOKENS_93>|",
|
| 3517 |
+
"|<EXTRA_TOKENS_94>|",
|
| 3518 |
+
"|<EXTRA_TOKENS_95>|",
|
| 3519 |
+
"|<EXTRA_TOKENS_96>|",
|
| 3520 |
+
"|<EXTRA_TOKENS_97>|",
|
| 3521 |
+
"|<EXTRA_TOKENS_98>|",
|
| 3522 |
+
"|<EXTRA_TOKENS_99>|",
|
| 3523 |
+
"|<EXTRA_TOKENS_100>|",
|
| 3524 |
+
"|<EXTRA_TOKENS_101>|",
|
| 3525 |
+
"|<EXTRA_TOKENS_102>|",
|
| 3526 |
+
"|<EXTRA_TOKENS_103>|",
|
| 3527 |
+
"|<EXTRA_TOKENS_104>|",
|
| 3528 |
+
"|<EXTRA_TOKENS_105>|",
|
| 3529 |
+
"|<EXTRA_TOKENS_106>|",
|
| 3530 |
+
"|<EXTRA_TOKENS_107>|",
|
| 3531 |
+
"|<EXTRA_TOKENS_108>|",
|
| 3532 |
+
"|<EXTRA_TOKENS_109>|",
|
| 3533 |
+
"|<EXTRA_TOKENS_110>|",
|
| 3534 |
+
"|<EXTRA_TOKENS_111>|",
|
| 3535 |
+
"|<EXTRA_TOKENS_112>|",
|
| 3536 |
+
"|<EXTRA_TOKENS_113>|",
|
| 3537 |
+
"|<EXTRA_TOKENS_114>|",
|
| 3538 |
+
"|<EXTRA_TOKENS_115>|",
|
| 3539 |
+
"|<EXTRA_TOKENS_116>|",
|
| 3540 |
+
"|<EXTRA_TOKENS_117>|",
|
| 3541 |
+
"|<EXTRA_TOKENS_118>|",
|
| 3542 |
+
"|<EXTRA_TOKENS_119>|",
|
| 3543 |
+
"|<EXTRA_TOKENS_120>|",
|
| 3544 |
+
"|<EXTRA_TOKENS_121>|",
|
| 3545 |
+
"|<EXTRA_TOKENS_122>|",
|
| 3546 |
+
"|<EXTRA_TOKENS_123>|",
|
| 3547 |
+
"|<EXTRA_TOKENS_124>|",
|
| 3548 |
+
"|<EXTRA_TOKENS_125>|",
|
| 3549 |
+
"|<EXTRA_TOKENS_126>|",
|
| 3550 |
+
"|<EXTRA_TOKENS_127>|",
|
| 3551 |
+
"|<EXTRA_TOKENS_128>|",
|
| 3552 |
+
"|<EXTRA_TOKENS_129>|",
|
| 3553 |
+
"|<EXTRA_TOKENS_130>|",
|
| 3554 |
+
"|<EXTRA_TOKENS_131>|",
|
| 3555 |
+
"|<EXTRA_TOKENS_132>|",
|
| 3556 |
+
"|<EXTRA_TOKENS_133>|",
|
| 3557 |
+
"|<EXTRA_TOKENS_134>|",
|
| 3558 |
+
"|<EXTRA_TOKENS_135>|",
|
| 3559 |
+
"|<EXTRA_TOKENS_136>|",
|
| 3560 |
+
"|<EXTRA_TOKENS_137>|",
|
| 3561 |
+
"|<EXTRA_TOKENS_138>|",
|
| 3562 |
+
"|<EXTRA_TOKENS_139>|",
|
| 3563 |
+
"|<EXTRA_TOKENS_140>|",
|
| 3564 |
+
"|<EXTRA_TOKENS_141>|",
|
| 3565 |
+
"|<EXTRA_TOKENS_142>|",
|
| 3566 |
+
"|<EXTRA_TOKENS_143>|",
|
| 3567 |
+
"|<EXTRA_TOKENS_144>|",
|
| 3568 |
+
"|<EXTRA_TOKENS_145>|",
|
| 3569 |
+
"|<EXTRA_TOKENS_146>|",
|
| 3570 |
+
"|<EXTRA_TOKENS_147>|",
|
| 3571 |
+
"|<EXTRA_TOKENS_148>|",
|
| 3572 |
+
"|<EXTRA_TOKENS_149>|",
|
| 3573 |
+
"|<EXTRA_TOKENS_150>|",
|
| 3574 |
+
"|<EXTRA_TOKENS_151>|",
|
| 3575 |
+
"|<EXTRA_TOKENS_152>|",
|
| 3576 |
+
"|<EXTRA_TOKENS_153>|",
|
| 3577 |
+
"|<EXTRA_TOKENS_154>|",
|
| 3578 |
+
"|<EXTRA_TOKENS_155>|",
|
| 3579 |
+
"|<EXTRA_TOKENS_156>|",
|
| 3580 |
+
"|<EXTRA_TOKENS_157>|",
|
| 3581 |
+
"|<EXTRA_TOKENS_158>|",
|
| 3582 |
+
"|<EXTRA_TOKENS_159>|",
|
| 3583 |
+
"|<EXTRA_TOKENS_160>|",
|
| 3584 |
+
"|<EXTRA_TOKENS_161>|",
|
| 3585 |
+
"|<EXTRA_TOKENS_162>|",
|
| 3586 |
+
"|<EXTRA_TOKENS_163>|",
|
| 3587 |
+
"|<EXTRA_TOKENS_164>|",
|
| 3588 |
+
"|<EXTRA_TOKENS_165>|",
|
| 3589 |
+
"|<EXTRA_TOKENS_166>|",
|
| 3590 |
+
"|<EXTRA_TOKENS_167>|",
|
| 3591 |
+
"|<EXTRA_TOKENS_168>|",
|
| 3592 |
+
"|<EXTRA_TOKENS_169>|",
|
| 3593 |
+
"|<EXTRA_TOKENS_170>|",
|
| 3594 |
+
"|<EXTRA_TOKENS_171>|",
|
| 3595 |
+
"|<EXTRA_TOKENS_172>|",
|
| 3596 |
+
"|<EXTRA_TOKENS_173>|",
|
| 3597 |
+
"|<EXTRA_TOKENS_174>|",
|
| 3598 |
+
"|<EXTRA_TOKENS_175>|",
|
| 3599 |
+
"|<EXTRA_TOKENS_176>|",
|
| 3600 |
+
"|<EXTRA_TOKENS_177>|",
|
| 3601 |
+
"|<EXTRA_TOKENS_178>|",
|
| 3602 |
+
"|<EXTRA_TOKENS_179>|",
|
| 3603 |
+
"|<EXTRA_TOKENS_180>|",
|
| 3604 |
+
"|<EXTRA_TOKENS_181>|",
|
| 3605 |
+
"|<EXTRA_TOKENS_182>|",
|
| 3606 |
+
"|<EXTRA_TOKENS_183>|",
|
| 3607 |
+
"|<EXTRA_TOKENS_184>|",
|
| 3608 |
+
"|<EXTRA_TOKENS_185>|",
|
| 3609 |
+
"|<EXTRA_TOKENS_186>|",
|
| 3610 |
+
"|<EXTRA_TOKENS_187>|",
|
| 3611 |
+
"|<EXTRA_TOKENS_188>|",
|
| 3612 |
+
"|<EXTRA_TOKENS_189>|",
|
| 3613 |
+
"|<EXTRA_TOKENS_190>|",
|
| 3614 |
+
"|<EXTRA_TOKENS_191>|",
|
| 3615 |
+
"|<EXTRA_TOKENS_192>|",
|
| 3616 |
+
"|<EXTRA_TOKENS_193>|",
|
| 3617 |
+
"|<EXTRA_TOKENS_194>|",
|
| 3618 |
+
"|<EXTRA_TOKENS_195>|",
|
| 3619 |
+
"|<EXTRA_TOKENS_196>|",
|
| 3620 |
+
"|<EXTRA_TOKENS_197>|",
|
| 3621 |
+
"|<EXTRA_TOKENS_198>|",
|
| 3622 |
+
"|<EXTRA_TOKENS_199>|",
|
| 3623 |
+
"|<EXTRA_TOKENS_200>|",
|
| 3624 |
+
"|<EXTRA_TOKENS_201>|",
|
| 3625 |
+
"|<EXTRA_TOKENS_202>|",
|
| 3626 |
+
"|<EXTRA_TOKENS_203>|",
|
| 3627 |
+
"|<EXTRA_TOKENS_204>|",
|
| 3628 |
+
"|<EXTRA_TOKENS_205>|",
|
| 3629 |
+
"|<EXTRA_TOKENS_206>|",
|
| 3630 |
+
"|<EXTRA_TOKENS_207>|",
|
| 3631 |
+
"|<EXTRA_TOKENS_208>|",
|
| 3632 |
+
"|<EXTRA_TOKENS_209>|",
|
| 3633 |
+
"|<EXTRA_TOKENS_210>|",
|
| 3634 |
+
"|<EXTRA_TOKENS_211>|",
|
| 3635 |
+
"|<EXTRA_TOKENS_212>|",
|
| 3636 |
+
"|<EXTRA_TOKENS_213>|",
|
| 3637 |
+
"|<EXTRA_TOKENS_214>|",
|
| 3638 |
+
"|<EXTRA_TOKENS_215>|",
|
| 3639 |
+
"|<EXTRA_TOKENS_216>|",
|
| 3640 |
+
"|<EXTRA_TOKENS_217>|",
|
| 3641 |
+
"|<EXTRA_TOKENS_218>|",
|
| 3642 |
+
"|<EXTRA_TOKENS_219>|",
|
| 3643 |
+
"|<EXTRA_TOKENS_220>|",
|
| 3644 |
+
"|<EXTRA_TOKENS_221>|",
|
| 3645 |
+
"|<EXTRA_TOKENS_222>|",
|
| 3646 |
+
"|<EXTRA_TOKENS_223>|",
|
| 3647 |
+
"|<EXTRA_TOKENS_224>|",
|
| 3648 |
+
"|<EXTRA_TOKENS_225>|",
|
| 3649 |
+
"|<EXTRA_TOKENS_226>|",
|
| 3650 |
+
"|<EXTRA_TOKENS_227>|",
|
| 3651 |
+
"|<EXTRA_TOKENS_228>|",
|
| 3652 |
+
"|<EXTRA_TOKENS_229>|",
|
| 3653 |
+
"|<EXTRA_TOKENS_230>|",
|
| 3654 |
+
"|<EXTRA_TOKENS_231>|",
|
| 3655 |
+
"|<EXTRA_TOKENS_232>|",
|
| 3656 |
+
"|<EXTRA_TOKENS_233>|",
|
| 3657 |
+
"|<EXTRA_TOKENS_234>|",
|
| 3658 |
+
"|<EXTRA_TOKENS_235>|",
|
| 3659 |
+
"|<EXTRA_TOKENS_236>|",
|
| 3660 |
+
"|<EXTRA_TOKENS_237>|",
|
| 3661 |
+
"|<EXTRA_TOKENS_238>|",
|
| 3662 |
+
"|<EXTRA_TOKENS_239>|",
|
| 3663 |
+
"|<EXTRA_TOKENS_240>|",
|
| 3664 |
+
"|<EXTRA_TOKENS_241>|",
|
| 3665 |
+
"|<EXTRA_TOKENS_242>|",
|
| 3666 |
+
"|<EXTRA_TOKENS_243>|",
|
| 3667 |
+
"|<EXTRA_TOKENS_244>|",
|
| 3668 |
+
"|<EXTRA_TOKENS_245>|",
|
| 3669 |
+
"|<EXTRA_TOKENS_246>|",
|
| 3670 |
+
"|<EXTRA_TOKENS_247>|",
|
| 3671 |
+
"|<EXTRA_TOKENS_248>|",
|
| 3672 |
+
"|<EXTRA_TOKENS_249>|",
|
| 3673 |
+
"|<EXTRA_TOKENS_250>|",
|
| 3674 |
+
"|<EXTRA_TOKENS_251>|",
|
| 3675 |
+
"|<EXTRA_TOKENS_252>|",
|
| 3676 |
+
"|<EXTRA_TOKENS_253>|",
|
| 3677 |
+
"|<EXTRA_TOKENS_254>|",
|
| 3678 |
+
"|<EXTRA_TOKENS_255>|",
|
| 3679 |
+
"|<EXTRA_TOKENS_256>|",
|
| 3680 |
+
"|<EXTRA_TOKENS_257>|",
|
| 3681 |
+
"|<EXTRA_TOKENS_258>|",
|
| 3682 |
+
"|<EXTRA_TOKENS_259>|",
|
| 3683 |
+
"|<EXTRA_TOKENS_260>|",
|
| 3684 |
+
"|<EXTRA_TOKENS_261>|",
|
| 3685 |
+
"|<EXTRA_TOKENS_262>|",
|
| 3686 |
+
"|<EXTRA_TOKENS_263>|",
|
| 3687 |
+
"|<EXTRA_TOKENS_264>|",
|
| 3688 |
+
"|<EXTRA_TOKENS_265>|",
|
| 3689 |
+
"|<EXTRA_TOKENS_266>|",
|
| 3690 |
+
"|<EXTRA_TOKENS_267>|",
|
| 3691 |
+
"|<EXTRA_TOKENS_268>|",
|
| 3692 |
+
"<im_start>",
|
| 3693 |
+
"<im_end>",
|
| 3694 |
+
"<im_patch>",
|
| 3695 |
+
"<im_col>",
|
| 3696 |
+
"<|image|>",
|
| 3697 |
+
"<im_low>"
|
| 3698 |
+
],
|
| 3699 |
+
"auto_map": {
|
| 3700 |
+
"AutoProcessor": "processing_molmoact.MolmoActProcessor"
|
| 3701 |
+
},
|
| 3702 |
+
"bos_token": "<|endoftext|>",
|
| 3703 |
+
"clean_up_tokenization_spaces": false,
|
| 3704 |
+
"eos_token": "<|endoftext|>",
|
| 3705 |
+
"errors": "replace",
|
| 3706 |
+
"extra_special_tokens": {},
|
| 3707 |
+
"model_max_length": 131072,
|
| 3708 |
+
"pad_token": "<|endoftext|>",
|
| 3709 |
+
"processor_class": "MolmoActProcessor",
|
| 3710 |
+
"split_special_tokens": false,
|
| 3711 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 3712 |
+
"unk_token": null
|
| 3713 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|