Update README.md
Browse files
README.md
CHANGED
|
@@ -3,6 +3,7 @@ license: apache-2.0
|
|
| 3 |
datasets:
|
| 4 |
- allenai/dolma
|
| 5 |
- allenai/tulu-v2-sft-mixture
|
|
|
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
---
|
|
@@ -11,7 +12,7 @@ language:
|
|
| 11 |
<img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
| 12 |
|
| 13 |
|
| 14 |
-
# Model Card for OLMo
|
| 15 |
|
| 16 |
**Requires transformers versions v4.40.0 or newer**
|
| 17 |
|
|
@@ -20,7 +21,8 @@ OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the scie
|
|
| 20 |
The OLMo base models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
|
| 21 |
The adapted versions are trained on the [Tulu SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) and, for the Instruct version, a [cleaned version of the UltraFeedback dataset](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned).
|
| 22 |
|
| 23 |
-
OLMo
|
|
|
|
| 24 |
They show the performance gain that OLMo base models can achieve with existing fine-tuning techniques.
|
| 25 |
|
| 26 |
## Model Details
|
|
@@ -28,13 +30,13 @@ They show the performance gain that OLMo base models can achieve with existing f
|
|
| 28 |
We release two adapted model versions:
|
| 29 |
| Model | Training Method(s) | Datasets | Context Length |
|
| 30 |
|------|--------|---------|--|
|
| 31 |
-
| [OLMo
|
| 32 |
-
| [OLMo
|
| 33 |
|
| 34 |
-
These models are both trained on top of OLMo
|
| 35 |
| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|
| 36 |
|------|--------|---------|-------------|-----------------|----------------|
|
| 37 |
-
| [OLMo
|
| 38 |
|
| 39 |
|
| 40 |
### Model Description
|
|
@@ -66,8 +68,8 @@ You can run these models using recent (>= 4.40) versions of transformers.
|
|
| 66 |
|
| 67 |
```python
|
| 68 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 69 |
-
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-
|
| 70 |
-
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-
|
| 71 |
chat = [
|
| 72 |
{ "role": "user", "content": "What is language modeling?" },
|
| 73 |
]
|
|
@@ -93,9 +95,9 @@ Core model results for the 7B adapted models are found below.
|
|
| 93 |
|
| 94 |
| Model | MMLU 0-shot β | AlpacaEval %win β | ToxiGen % Toxic β | TruthfulQA %Info+True β |
|
| 95 |
|-----------------------|---------------|--------------------|--------------------|-------------------------|
|
| 96 |
-
| **OLMo
|
| 97 |
-
| **[OLMo
|
| 98 |
-
| **[OLMo
|
| 99 |
|
| 100 |
|
| 101 |
|
|
|
|
| 3 |
datasets:
|
| 4 |
- allenai/dolma
|
| 5 |
- allenai/tulu-v2-sft-mixture
|
| 6 |
+
- allenai/ultrafeedback_binarized_cleaned
|
| 7 |
language:
|
| 8 |
- en
|
| 9 |
---
|
|
|
|
| 12 |
<img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
| 13 |
|
| 14 |
|
| 15 |
+
# Model Card for OLMo 7B July 2024 SFT
|
| 16 |
|
| 17 |
**Requires transformers versions v4.40.0 or newer**
|
| 18 |
|
|
|
|
| 21 |
The OLMo base models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
|
| 22 |
The adapted versions are trained on the [Tulu SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) and, for the Instruct version, a [cleaned version of the UltraFeedback dataset](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned).
|
| 23 |
|
| 24 |
+
OLMo 7B Instruct SFT are two adapted versions of these models trained for better question answering.
|
| 25 |
+
These are updated OLMo models corresponding to our July 2024 release.
|
| 26 |
They show the performance gain that OLMo base models can achieve with existing fine-tuning techniques.
|
| 27 |
|
| 28 |
## Model Details
|
|
|
|
| 30 |
We release two adapted model versions:
|
| 31 |
| Model | Training Method(s) | Datasets | Context Length |
|
| 32 |
|------|--------|---------|--|
|
| 33 |
+
| [OLMo 7B July 2024 SFT](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-SFT-hf) | SFT | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) | 2048 |
|
| 34 |
+
| [OLMo 7B July 2024 Instruct](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-Instruct-hf) | SFT + DPO | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) + [Ultrafeedback Cleaned](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned) | 2048 |
|
| 35 |
|
| 36 |
+
These models are both trained on top of OLMo 7b July 2024:
|
| 37 |
| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|
| 38 |
|------|--------|---------|-------------|-----------------|----------------|
|
| 39 |
+
| [OLMo 7B July 2024](https://huggingface.co/allenai/OLMo-1.7-7B-hf) | 2.7T |32 | 4096 | 32 | 4096 |
|
| 40 |
|
| 41 |
|
| 42 |
### Model Description
|
|
|
|
| 68 |
|
| 69 |
```python
|
| 70 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 71 |
+
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0724-Instruct-hf")
|
| 72 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-0724-Instruct-hf")
|
| 73 |
chat = [
|
| 74 |
{ "role": "user", "content": "What is language modeling?" },
|
| 75 |
]
|
|
|
|
| 95 |
|
| 96 |
| Model | MMLU 0-shot β | AlpacaEval %win β | ToxiGen % Toxic β | TruthfulQA %Info+True β |
|
| 97 |
|-----------------------|---------------|--------------------|--------------------|-------------------------|
|
| 98 |
+
| **OLMo July 2024 base** | 50.8 | - | 85.2 | 28.4 |
|
| 99 |
+
| **[OLMo 7B July 2024 SFT](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-SFT-hf)** | 54.2 | 70.9 | .1 | 44.4 |
|
| 100 |
+
| **[OLMo 7B July 2024 Instruct](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-Instruct-hf)** | 52.8 | 83.5 | 1.7 | 70.3 |
|
| 101 |
|
| 102 |
|
| 103 |
|