--- license: llama3 base_model: - meta-llama/Llama-3.3-70B-Instruct --- # Model Overview - **Model Architecture:** Llama-3.3 - **Input:** Text - **Output:** Text - **Supported Hardware Microarchitecture:** AMD MI350/MI355 - **ROCm**: 7.0 - **PyTorch**: 2.8.0 - **Transformers**: 4.53.0 - **Operating System(s):** Linux - **Inference Engine:** [vLLM](https://docs.vllm.ai/en/latest/) - **Model Optimizer:** [AMD-Quark](https://quark.docs.amd.com/latest/index.html) (V0.9) - **Weight quantization:** OCP MXFP4, Static - **Activation quantization:** OCP MXFP4, Dynamic - **KV cache quantization:** OCP FP8, Static - **Calibration Dataset:** [Pile](https://huggingface.co/datasets/mit-han-lab/pile-val-backup) This model was built with Meta Llama by applying [AMD-Quark](https://quark.docs.amd.com/latest/index.html) for MXFP4 quantization. # Model Quantization This model was obtained by quantizing [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)'s weights and activations to MXFP4 and KV caches to FP8, using AutoSmoothQuant algorithm in [AMD-Quark](https://quark.docs.amd.com/latest/index.html). **Quantization scripts:** ``` cd Quark/examples/torch/language_modeling/llm_ptq/ python3 quantize_quark.py --model_dir meta-llama/Llama-3.3-70B-Instruct \ --quant_scheme w_mxfp4_a_mxfp4 \ --kv_cache_dtype fp8 \ --num_calib_data 128 \ --multi_gpu \ --quant_algo autosmoothquant --model_export hf_format \ --output_dir amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ ``` # Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. ## Evaluation The model was evaluated on MMLU, GSM8K_COT, ARC Challenge and IFEVAL. Evaluation was conducted using the framework [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the vLLM engine. ### Accuracy
Benchmark Llama-3.3-70B-Instruct Llama-3.3-70B-Instruct-MXFP4(this model) Recovery
MMLU (5-shot) 83.29 80.99 97.24%
GSM8K_COT (8-shot, strict-match) 93.18 92.12 98.86%
ARC Challenge (0-shot) 94.25 93.05 98.73%
IFEVAL (0-shot, (inst_level_strict_acc+prompt_level_strict_acc)/2) 89.8 88.00 98.00%
### Reproduction The results were obtained using the following commands: #### MMLU ``` lm_eval \ --model vllm \ --model_args pretrained=amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ,gpu_memory_utilization=0.8,tensor_parallel_size=4,kv_cache_dtype='fp8' \ --tasks mmlu_llama \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 5 \ --batch_size auto ``` #### GSM8K_COT ``` lm_eval \ --model vllm \ --model_args pretrained=amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ,gpu_memory_utilization=0.8,tensor_parallel_size=4,kv_cache_dtype='fp8' \ --tasks gsm8k_llama \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 8 \ --batch_size auto ``` #### ARC Challenge ``` lm_eval \ --model vllm \ --model_args pretrained=amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ,gpu_memory_utilization=0.8,tensor_parallel_size=4,kv_cache_dtype='fp8' \ --tasks arc_challenge_llama \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 0 \ --batch_size auto ``` #### IFEVAL ``` lm_eval \ --model vllm \ --model_args pretrained=amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ,gpu_memory_utilization=0.8,tensor_parallel_size=4,kv_cache_dtype='fp8' \ --tasks ifeval \ --fewshot_as_multiturn \ --apply_chat_template \ --num_fewshot 0 \ --batch_size auto ``` # License Modifications Copyright(c) 2025 Advanced Micro Devices, Inc. All rights reserved.