EC2 Default User
add model
3a0d1d6
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model_index:
  - name: distilbert-base-uncased-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metric:
          name: Accuracy
          type: accuracy
          value: 0.985193893275295

distilbert-base-uncased-ner

This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0664
  • Precision: 0.9332
  • Recall: 0.9423
  • F1: 0.9377
  • Accuracy: 0.9852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2042 1.0 878 0.0636 0.9230 0.9253 0.9241 0.9822
0.0428 2.0 1756 0.0577 0.9286 0.9370 0.9328 0.9841
0.0199 3.0 2634 0.0606 0.9364 0.9401 0.9383 0.9851
0.0121 4.0 3512 0.0641 0.9339 0.9380 0.9360 0.9847
0.0079 5.0 4390 0.0664 0.9332 0.9423 0.9377 0.9852

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.8.1+cu111
  • Datasets 1.8.0
  • Tokenizers 0.10.3