Commit
·
84b5548
1
Parent(s):
fe776d1
Initial commit
Browse files- README.md +475 -0
- config.json +69 -0
- ds_config_zero2.json +39 -0
- latest +1 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- rng_state_0.pth +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- trainer_state.json +364 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +484 -0
README.md
ADDED
|
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license:
|
| 5 |
+
- apache-2.0
|
| 6 |
+
- bsd-3-clause
|
| 7 |
+
tags:
|
| 8 |
+
- summarization
|
| 9 |
+
- led
|
| 10 |
+
- summary
|
| 11 |
+
- longformer
|
| 12 |
+
- booksum
|
| 13 |
+
- long-document
|
| 14 |
+
- long-form
|
| 15 |
+
datasets:
|
| 16 |
+
- kmfoda/booksum
|
| 17 |
+
metrics:
|
| 18 |
+
- rouge
|
| 19 |
+
widget:
|
| 20 |
+
- text: large earthquakes along a given fault segment do not occur at random intervals
|
| 21 |
+
because it takes time to accumulate the strain energy for the rupture. The rates
|
| 22 |
+
at which tectonic plates move and accumulate strain at their boundaries are approximately
|
| 23 |
+
uniform. Therefore, in first approximation, one may expect that large ruptures
|
| 24 |
+
of the same fault segment will occur at approximately constant time intervals.
|
| 25 |
+
If subsequent main shocks have different amounts of slip across the fault, then
|
| 26 |
+
the recurrence time may vary, and the basic idea of periodic mainshocks must be
|
| 27 |
+
modified. For great plate boundary ruptures the length and slip often vary by
|
| 28 |
+
a factor of 2. Along the southern segment of the San Andreas fault the recurrence
|
| 29 |
+
interval is 145 years with variations of several decades. The smaller the standard
|
| 30 |
+
deviation of the average recurrence interval, the more specific could be the long
|
| 31 |
+
term prediction of a future mainshock.
|
| 32 |
+
example_title: earthquakes
|
| 33 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
| 34 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
| 35 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
| 36 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
| 37 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
| 38 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
| 39 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
| 40 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
| 41 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
| 42 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
| 43 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
| 44 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
| 45 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
| 46 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
| 47 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
| 48 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
| 49 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
| 50 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
| 51 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
| 52 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
| 53 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
| 54 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
| 55 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
| 56 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
| 57 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
| 58 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
| 59 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
| 60 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
| 61 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
| 62 |
+
observations. A neural network expresses a prior via the function space of its
|
| 63 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
| 64 |
+
bias of this function space (Section 5).'
|
| 65 |
+
example_title: scientific paper
|
| 66 |
+
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
| 67 |
+
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
| 68 |
+
is generated in various environments and scenarios, before looking at what should
|
| 69 |
+
be done with this data and how to design the best possible architecture to accomplish
|
| 70 |
+
this The evolution of IT architectures, described in Chapter 2, means that the
|
| 71 |
+
data is no longer processed by a few big monolith systems, but rather by a group
|
| 72 |
+
of services In parallel to the processing layer, the underlying data storage has
|
| 73 |
+
also changed and became more distributed This, in turn, required a significant
|
| 74 |
+
paradigm shift as the traditional approach to transactions (ACID) could no longer
|
| 75 |
+
be supported. On top of this, cloud computing is becoming a major approach with
|
| 76 |
+
the benefits of reducing costs and providing on-demand scalability but at the
|
| 77 |
+
same time introducing concerns about privacy, data ownership, etc In the meantime
|
| 78 |
+
the Internet continues its exponential growth: Every day both structured and unstructured
|
| 79 |
+
data is published and available for processing: To achieve competitive advantage
|
| 80 |
+
companies have to relate their corporate resources to external services, e.g.
|
| 81 |
+
financial markets, weather forecasts, social media, etc While several of the sites
|
| 82 |
+
provide some sort of API to access the data in a more orderly fashion; countless
|
| 83 |
+
sources require advanced web mining and Natural Language Processing (NLP) processing
|
| 84 |
+
techniques: Advances in science push researchers to construct new instruments
|
| 85 |
+
for observing the universe O conducting experiments to understand even better
|
| 86 |
+
the laws of physics and other domains. Every year humans have at their disposal
|
| 87 |
+
new telescopes, space probes, particle accelerators, etc These instruments generate
|
| 88 |
+
huge streams of data, which need to be stored and analyzed. The constant drive
|
| 89 |
+
for efficiency in the industry motivates the introduction of new automation techniques
|
| 90 |
+
and process optimization: This could not be done without analyzing the precise
|
| 91 |
+
data that describe these processes. As more and more human tasks are automated,
|
| 92 |
+
machines provide rich data sets, which can be analyzed in real-time to drive efficiency
|
| 93 |
+
to new levels. Finally, it is now evident that the growth of the Internet of Things
|
| 94 |
+
is becoming a major source of data. More and more of the devices are equipped
|
| 95 |
+
with significant computational power and can generate a continuous data stream
|
| 96 |
+
from their sensors. In the subsequent sections of this chapter, we will look at
|
| 97 |
+
the domains described above to see what they generate in terms of data sets. We
|
| 98 |
+
will compare the volumes but will also look at what is characteristic and important
|
| 99 |
+
from their respective points of view. 3.1 The Internet is undoubtedly the largest
|
| 100 |
+
database ever created by humans. While several well described; cleaned, and structured
|
| 101 |
+
data sets have been made available through this medium, most of the resources
|
| 102 |
+
are of an ambiguous, unstructured, incomplete or even erroneous nature. Still,
|
| 103 |
+
several examples in the areas such as opinion mining, social media analysis, e-governance,
|
| 104 |
+
etc, clearly show the potential lying in these resources. Those who can successfully
|
| 105 |
+
mine and interpret the Internet data can gain unique insight and competitive advantage
|
| 106 |
+
in their business An important area of data analytics on the edge of corporate
|
| 107 |
+
IT and the Internet is Web Analytics.'
|
| 108 |
+
example_title: data science textbook
|
| 109 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
| 110 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
| 111 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
| 112 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
| 113 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
| 114 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
| 115 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
| 116 |
+
|
| 117 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
| 118 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
| 119 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
| 120 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
| 121 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
| 122 |
+
|
| 123 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
| 124 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
| 125 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
| 126 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
| 127 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
| 128 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
| 129 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
| 130 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
| 131 |
+
would be preferred over block sparse attention (which we are going to discuss
|
| 132 |
+
in this post).
|
| 133 |
+
|
| 134 |
+
If you wonder why we need more compute when working with longer sequences, this
|
| 135 |
+
blog post is just right for you!
|
| 136 |
+
|
| 137 |
+
Some of the main questions one might have when working with standard BERT-like
|
| 138 |
+
attention include:
|
| 139 |
+
|
| 140 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
| 141 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
| 142 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
| 143 |
+
answer those questions.
|
| 144 |
+
|
| 145 |
+
What tokens should be attended to? We will give a practical example of how attention
|
| 146 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
| 147 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
| 148 |
+
attend to all other tokens.
|
| 149 |
+
|
| 150 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
| 151 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
| 152 |
+
available is queried and build a sensible list of key tokens to attend to.
|
| 153 |
+
|
| 154 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
| 155 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
| 156 |
+
''question'', ''answering'']
|
| 157 |
+
|
| 158 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
| 159 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
| 160 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
| 161 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
| 162 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
| 163 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
| 164 |
+
This intuition is the idea behind the concept of sliding attention.'
|
| 165 |
+
example_title: bigbird blog intro
|
| 166 |
+
- text: 'The majority of available text summarization datasets include short-form
|
| 167 |
+
source documents that lack long-range causal and temporal dependencies, and often
|
| 168 |
+
contain strong layout and stylistic biases. While relevant, such datasets will
|
| 169 |
+
offer limited challenges for future generations of text summarization systems.
|
| 170 |
+
We address these issues by introducing BookSum, a collection of datasets for long-form
|
| 171 |
+
narrative summarization. Our dataset covers source documents from the literature
|
| 172 |
+
domain, such as novels, plays and stories, and includes highly abstractive, human
|
| 173 |
+
written summaries on three levels of granularity of increasing difficulty: paragraph-,
|
| 174 |
+
chapter-, and book-level. The domain and structure of our dataset poses a unique
|
| 175 |
+
set of challenges for summarization systems, which include: processing very long
|
| 176 |
+
documents, non-trivial causal and temporal dependencies, and rich discourse structures.
|
| 177 |
+
To facilitate future work, we trained and evaluated multiple extractive and abstractive
|
| 178 |
+
summarization models as baselines for our dataset.'
|
| 179 |
+
example_title: BookSum Abstract
|
| 180 |
+
inference:
|
| 181 |
+
parameters:
|
| 182 |
+
max_length: 64
|
| 183 |
+
min_length: 8
|
| 184 |
+
no_repeat_ngram_size: 3
|
| 185 |
+
early_stopping: true
|
| 186 |
+
repetition_penalty: 3.5
|
| 187 |
+
length_penalty: 0.3
|
| 188 |
+
encoder_no_repeat_ngram_size: 3
|
| 189 |
+
num_beams: 4
|
| 190 |
+
model-index:
|
| 191 |
+
- name: pszemraj/led-large-book-summary
|
| 192 |
+
results:
|
| 193 |
+
- task:
|
| 194 |
+
type: summarization
|
| 195 |
+
name: Summarization
|
| 196 |
+
dataset:
|
| 197 |
+
name: kmfoda/booksum
|
| 198 |
+
type: kmfoda/booksum
|
| 199 |
+
config: kmfoda--booksum
|
| 200 |
+
split: test
|
| 201 |
+
metrics:
|
| 202 |
+
- type: rouge
|
| 203 |
+
value: 31.7308
|
| 204 |
+
name: ROUGE-1
|
| 205 |
+
verified: true
|
| 206 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjJmZjMxYTY0OGU3MzNjNmIzNmYyODNlNDg2ZGRhZDAzNTMwMDM5YWMxODc1OTc1ZWE3MzM2OTg1ODFhZDBkNCIsInZlcnNpb24iOjF9.B8BCKgySYVZW910_1zP0LfCpQYJbAe6loyWut76JlgZb2kV1_x9ybqtNESX0ka-lNqhYyXUNDpuS-7pTmsJVDg
|
| 207 |
+
- type: rouge
|
| 208 |
+
value: 5.3311
|
| 209 |
+
name: ROUGE-2
|
| 210 |
+
verified: true
|
| 211 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzViMmY4ODFjYTc5ODk5MmRhMDQ3ZDRiYWQwMDg0OTk3ZTA4NDAxYTNiNDgyMmI4NDA3ZDMwYWViOTBkODBjNyIsInZlcnNpb24iOjF9.MOhJLDcgvv93mVFL1igIgIiTAH3b2Xa4gmBObq7RF44Mmu8Kxtd1KP7rOlDVFOrtrsooGPGsyE1GMCQ2kqeMDg
|
| 212 |
+
- type: rouge
|
| 213 |
+
value: 16.1465
|
| 214 |
+
name: ROUGE-L
|
| 215 |
+
verified: true
|
| 216 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzNjMzEwMTliZGE3ZmQ4M2UxMDAyMTY3YzJjZmMyMDYyN2YyNDM0N2VhNzI1MDc1YTg4MTRjMmEzNjVkNTk1NCIsInZlcnNpb24iOjF9.XLJ-DVKiYLlbw5E5rWADKbzUzf5fNHhlTCWPCC5dU4NI9Yeh76aR7TPt36ZzLDwTBknnR8KHqlaF8F8YAvBUAg
|
| 217 |
+
- type: rouge
|
| 218 |
+
value: 29.0883
|
| 219 |
+
name: ROUGE-LSUM
|
| 220 |
+
verified: true
|
| 221 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTcwNzEwMmE5NjQxZTkzYmQyZDZmNzllYzYyNGI5OTMyNWMwNjdiM2I2YmM5YjdmY2E5OWQ3OTk3ZDA1MTc3YyIsInZlcnNpb24iOjF9.d6rFxjCB6RJNI_pn2DNNSjuZe4rdvj0RatkaTJRp5lP0F_AFfU5Zn9zRWzZJV7V-xMauIc4UhfdoLp9r_-CABA
|
| 222 |
+
- type: loss
|
| 223 |
+
value: 4.815707206726074
|
| 224 |
+
name: loss
|
| 225 |
+
verified: true
|
| 226 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTMwMTgxMmJkODY3MjkzOWJhMzJhOTIxMWVkODhjZmM0MWUzMWQ1N2JkZjRhOTQxNmU1YWVjYzQ0MDNlZWI3OSIsInZlcnNpb24iOjF9.mkBQHYhYFfDV6F4klXGJ1dSsF-pbCs-6F9zcw6IYznwmXUjtk7m5J4Zt4JAju5LKz4YizvEcUCl_L0WddnfvDA
|
| 227 |
+
- type: gen_len
|
| 228 |
+
value: 154.9036
|
| 229 |
+
name: gen_len
|
| 230 |
+
verified: true
|
| 231 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTc0ZmM1ZDM4MDE0MzY3MDM3OWJhNDkzZjJkZDdkMjU5M2JmMDJjYTIxODA1OTllNmY5ZWQzZDlmNWFiYzk4NiIsInZlcnNpb24iOjF9.VQ_O_xSTz870tnM08PJXQOwg9OsNNwI_HVX4S7AuW57_FzGGyRaWSuGE5SWzRS4Tur9YP0QxV4VV0Yoaoi3IAA
|
| 232 |
+
- task:
|
| 233 |
+
type: summarization
|
| 234 |
+
name: Summarization
|
| 235 |
+
dataset:
|
| 236 |
+
name: samsum
|
| 237 |
+
type: samsum
|
| 238 |
+
config: samsum
|
| 239 |
+
split: test
|
| 240 |
+
metrics:
|
| 241 |
+
- type: rouge
|
| 242 |
+
value: 33.4484
|
| 243 |
+
name: ROUGE-1
|
| 244 |
+
verified: true
|
| 245 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk4Yjg1YTc4YmY0MzBiZDU4ZjFhNzI4MjZkMWU1MzBlOWNlMjQ5ODMzY2YzYzRhYjJkMGUzNmI3ZjdkMzIzZSIsInZlcnNpb24iOjF9.AqS8A1OUiM0IZFBEGirv5F3Novk8lSUYSfPc3bYWLA6t-W7wgup3qA207eGbE5j9CkDWZ7QrSG1U6Z9A0sOqAA
|
| 246 |
+
- type: rouge
|
| 247 |
+
value: 10.4249
|
| 248 |
+
name: ROUGE-2
|
| 249 |
+
verified: true
|
| 250 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2U4NjUyNTFmOGM5OTlhZDMyMTlmM2E4OWI2NGFiMDAyMGJjMzRjNWNlMGEyYWFmNTE5ZWMxM2I0ZGZmNWNmOCIsInZlcnNpb24iOjF9.SgJcHJ4qoRWXFvFiwv1PUutWktvsxQNynVPEv-GtBgxd6WI7o561ONyco5U-5tcyE_1SbSCJzz-L-R-q3cvoDA
|
| 251 |
+
- type: rouge
|
| 252 |
+
value: 24.5802
|
| 253 |
+
name: ROUGE-L
|
| 254 |
+
verified: true
|
| 255 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ5MDI5MzdiNGE5NDM0MmU5OThmZTBkNjkxMzg5N2IxNGVlODdhZTZhNjg3NzFjYWEyMzA3MTQxNjMyMjRkOCIsInZlcnNpb24iOjF9.Bg5dHqCcJjmxa-xGWNR5lD9g3quX7lKkH0pjiTd2xE5WiPoLLN2c0mYa2GovdW7__WnYwhhHC7es03jmvyZbCw
|
| 256 |
+
- type: rouge
|
| 257 |
+
value: 29.8226
|
| 258 |
+
name: ROUGE-LSUM
|
| 259 |
+
verified: true
|
| 260 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFhOTEwNGM1MmZkNDk2ZjQ1Y2MyNjM3MGI5MGY3MWVkM2I0MjU2NWFiYmEwMjE4MTJlZWIwOGQ2MjQ3YjgzYSIsInZlcnNpb24iOjF9.W_aQKs10oXQdKEczJBGM3iiwJgb-VaXTpyA3sGof5WbhHf9vITAQA-xvynh5LgKtXQ1zjx737hnHgjEsu_Y0Cw
|
| 261 |
+
- type: loss
|
| 262 |
+
value: 4.176078796386719
|
| 263 |
+
name: loss
|
| 264 |
+
verified: true
|
| 265 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2JhODQ5YTZkNDZkZGYyNGU2MzkxMWU5MTEwMGM2YmVjZTA5YzI5NTMxMDNhYjhlOTAxMzFiMDYwYmM0MjEzZCIsInZlcnNpb24iOjF9.OvZrPBOR5jhkoTGBgsInkH7j3_xpacXHDoT7UIXEnyXzadfBO-O-K6fjalLNZw8wSkbjHIFcL_6S_qTTxPsNAQ
|
| 266 |
+
- type: gen_len
|
| 267 |
+
value: 65.4005
|
| 268 |
+
name: gen_len
|
| 269 |
+
verified: true
|
| 270 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2NhYjc3ZjQzNDEwYmMzOTM0ODkyZTJhZWNhNzZhYmEyZTYxMzA2YTYzMWFjOTA5ZjlhYWMzODg3NzY1ZTUwYSIsInZlcnNpb24iOjF9.vk9bgmtQFeRwdY3VXjtrJr_5wUCIeoAkI3kO0cHxhxmJo6RvUnyXiut72FuB-mlLZvqgiNkaZ-u_bh0Z3DjuCw
|
| 271 |
+
- task:
|
| 272 |
+
type: summarization
|
| 273 |
+
name: Summarization
|
| 274 |
+
dataset:
|
| 275 |
+
name: billsum
|
| 276 |
+
type: billsum
|
| 277 |
+
config: default
|
| 278 |
+
split: test
|
| 279 |
+
metrics:
|
| 280 |
+
- type: rouge
|
| 281 |
+
value: 40.5843
|
| 282 |
+
name: ROUGE-1
|
| 283 |
+
verified: true
|
| 284 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTVjMDkyMWZjYTQ0NzgzNGUxZjNiMTg3NjU1MWJlNTQ2MWQ1NjE1MDk1OTU4ZjJiNGQ5ODg3Y2VlMWUyMzllNyIsInZlcnNpb24iOjF9.OhqBcVIuHk7fzmdrsWMvUe1bLeVMZVstZUoZpP7C1vR-3aIDl7r6eBmPrt5w-KcNq5p4teNPBsq7oKzbd5ZgDQ
|
| 285 |
+
- type: rouge
|
| 286 |
+
value: 17.3401
|
| 287 |
+
name: ROUGE-2
|
| 288 |
+
verified: true
|
| 289 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGQxYmQzMmE0OTcyNTM5NmMwNjIxNzYxZDcwMDFkYzJkOWY4YWY3NTdhZGRhZDdlMDAxNzcwODQ5OGM3Mzc1MCIsInZlcnNpb24iOjF9.Pksn25EEqvmx757N7Swrd4yXc_xU7-AMN9yNe8lrbBa-l1LoI_2PUASvnjML4f705cfuyMAfb0FkFp5WfER2AA
|
| 290 |
+
- type: rouge
|
| 291 |
+
value: 25.1256
|
| 292 |
+
name: ROUGE-L
|
| 293 |
+
verified: true
|
| 294 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjhjYzI5MDBiMjk2NTY3MDNmZTdiOGYwMTRlYjIwZjAwMjdlNTAyYzdhYTJlODQ4MjYzYmQ3MjRlYTA2YzhhZSIsInZlcnNpb24iOjF9.1jPepsweS2bzIqDverQzzhmhFGch7gpoEGFGqQ8zW7K10aUKWFX8lt-uZAmTa1Z5ZhzyXGBzc3dReFPhWRRJBg
|
| 295 |
+
- type: rouge
|
| 296 |
+
value: 34.6619
|
| 297 |
+
name: ROUGE-LSUM
|
| 298 |
+
verified: true
|
| 299 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VkZDIxNWJjOTA0NzFjOTIwOTdjYjc1M2EyNDVjZjY2ZjY3MjIxNDk3YTc5YWExNzAwN2FhOTc1NjVhYjBkYiIsInZlcnNpb24iOjF9.8opqHSUckPohoSF9jfPTpXDz2AtDwvdMqOdIXx2kE1tkOcbLPbOBfcc8RhRR98y8S26yC6EYFhFnf03CV2ejAQ
|
| 300 |
+
- type: loss
|
| 301 |
+
value: 4.792657375335693
|
| 302 |
+
name: loss
|
| 303 |
+
verified: true
|
| 304 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTY5ZTRkMGU3OGVkODMzMDU5OWE1NTM5YjA4NDliZDlmNzc2NzZjNjFmNTA3M2EwY2NmN2E0MWJmZjQ5ZDliMiIsInZlcnNpb24iOjF9.KCKdk8xt2NWcMmYKV3-9eVEsFm9MqGllSMu9QCFJFIQlnyNXllHKdBLouoaGQz8IRYXvZKH8_TLDPIQx-31jAg
|
| 305 |
+
- type: gen_len
|
| 306 |
+
value: 163.9394
|
| 307 |
+
name: gen_len
|
| 308 |
+
verified: true
|
| 309 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzdkZDYyZGUzYmFkZmI2NjUwYmQ0MzZjMmIyZjI1YTFiMzM4OThiZjBiMzljOTVkZTgwMjA0NTE5OGM2YmFjMiIsInZlcnNpb24iOjF9.XyMZLUdkUIF32KTJMuv_bJswQCx_Tfg4Fx823cURUixSeoIKps8_a634AreZ3Z8kb7bfE_sFGh3rM9KWsMxlDw
|
| 310 |
+
- task:
|
| 311 |
+
type: summarization
|
| 312 |
+
name: Summarization
|
| 313 |
+
dataset:
|
| 314 |
+
name: multi_news
|
| 315 |
+
type: multi_news
|
| 316 |
+
config: default
|
| 317 |
+
split: test
|
| 318 |
+
metrics:
|
| 319 |
+
- type: rouge
|
| 320 |
+
value: 39.0834
|
| 321 |
+
name: ROUGE-1
|
| 322 |
+
verified: true
|
| 323 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjYzMmVlMDM4MTNkMTI4MjAyMTU2YTg1ZWQwNTI1MmJlNGUwZmE1NTRmYTljZTQwY2RlMjcxOTgyZGMyYTc0ZiIsInZlcnNpb24iOjF9.6yuSr7UmsFatwqQ-mEO4gmsEtWI05kGB5Ib2pnl05H1OiPT2uUwmqdUytUw8KTx9u1jv9q0cTF1cL-n2kPEJAA
|
| 324 |
+
- type: rouge
|
| 325 |
+
value: 11.4043
|
| 326 |
+
name: ROUGE-2
|
| 327 |
+
verified: true
|
| 328 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWI5N2U2ZWI1ODM2MWUwOTIzYTAzNmRhNDA2OWEzZWRjMGEzMjBmY2EwN2YyYzU1NWE0YjIyZDE3MWE0MmMxZCIsInZlcnNpb24iOjF9.wonuxbBl25TzEaHUH_E816nHJ1OSXKfkaq7eJzbLpsfeGwcDklxUSxZxRO7VBiBMaY3Qttf9ywmEIPp40HnpBA
|
| 329 |
+
- type: rouge
|
| 330 |
+
value: 19.1813
|
| 331 |
+
name: ROUGE-L
|
| 332 |
+
verified: true
|
| 333 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjU1NDZhN2NkMzZiZGJkODE4NDZiYjViOTZkNGMyNDlkNjBlZmFjYzU1N2IzMjFjYjY1MDU1Zjk2MzA0M2U4NyIsInZlcnNpb24iOjF9.bTCRzv3J9NiCh4aV23tAWGTvrdQCv_RS40zGwC4AJXtGS40cY7tJHYwBf9U9_rCetDBxqfjJpdaUbCAOglxLAA
|
| 334 |
+
- type: rouge
|
| 335 |
+
value: 35.1581
|
| 336 |
+
name: ROUGE-LSUM
|
| 337 |
+
verified: true
|
| 338 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDNhNTUyZjE4NjYxYjIzYThmMDM2YWNhM2QwYzY1ODI2ZTE3NmNjMmVhOTAzZjZlOWQwYzc1NzU2NDNjNzIxMyIsInZlcnNpb24iOjF9.cWlSbEBgrMN5D-fV_yL9geNMyMkIItcVO3wehNJPzFi3E0v1-4q8pnX-UgjLzto8X7JLi6as2V_HtZE4-C-CDw
|
| 339 |
+
- type: loss
|
| 340 |
+
value: 4.654905319213867
|
| 341 |
+
name: loss
|
| 342 |
+
verified: true
|
| 343 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc5Nzk0ODhiNWUzNTAxNzk2YzZmMjU2NDliY2UzOTYyYTdmZGEyYjI5NDNhOTE0MGUxOTgxMGVjMmNhM2UyMSIsInZlcnNpb24iOjF9.eBBAebcl3AwkrjR6a8BvoSjDfpw8LWTRFjyIFHVzspvoOKVfnO8_NB_UeR_K127OwXyoZ70Z7X_aKJOe-2kTDA
|
| 344 |
+
- type: gen_len
|
| 345 |
+
value: 186.2494
|
| 346 |
+
name: gen_len
|
| 347 |
+
verified: true
|
| 348 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWI2NjVlYjgwYWJiMjcyMDUzMzEwNDNjZTMxMDM0MjAzMzk1ZmIwY2Q1ZDQ2Y2M5NDBlMDEzYzFkNWEyNzJmNiIsInZlcnNpb24iOjF9.iZ1Iy7FuWL4GH7LS5EylVj5eZRC3L2ZsbYQapAkMNzR_VXPoMGvoM69Hp-kU7gW55tmz2V4Qxhvoz9cM8fciBA
|
| 349 |
+
---
|
| 350 |
+
|
| 351 |
+
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|
| 352 |
+
|
| 353 |
+
<a href="https://colab.research.google.com/gist/pszemraj/3eba944ddc9fc9a4a1bfb21e83b57620/summarization-token-batching.ipynb">
|
| 354 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 355 |
+
</a>
|
| 356 |
+
|
| 357 |
+
A fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the `BookSum` dataset.
|
| 358 |
+
|
| 359 |
+
Goal: a model that can generalize well and is useful in summarizing long text in academic and daily usage. The result works well on lots of text and can handle 16384 tokens/batch (_if you have the GPU memory to handle that_)
|
| 360 |
+
|
| 361 |
+
- See the Colab demo linked above or try the [demo on Spaces](https://huggingface.co/spaces/pszemraj/summarize-long-text)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
> Note: the API is set to generate a max of 64 tokens for runtime reasons, so the summaries may be truncated (depending on the length of input text). For best results use python as below.
|
| 365 |
+
|
| 366 |
+
---
|
| 367 |
+
|
| 368 |
+
# Usage - Basic
|
| 369 |
+
|
| 370 |
+
- use `encoder_no_repeat_ngram_size=3` when calling the pipeline object to improve summary quality.
|
| 371 |
+
- this forces the model to use new vocabulary and create an abstractive summary, otherwise it may compile the best _extractive_ summary from the input provided.
|
| 372 |
+
|
| 373 |
+
Load the model into a pipeline object:
|
| 374 |
+
|
| 375 |
+
```python
|
| 376 |
+
import torch
|
| 377 |
+
from transformers import pipeline
|
| 378 |
+
|
| 379 |
+
hf_name = 'pszemraj/led-large-book-summary'
|
| 380 |
+
|
| 381 |
+
summarizer = pipeline(
|
| 382 |
+
"summarization",
|
| 383 |
+
hf_name,
|
| 384 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 385 |
+
)
|
| 386 |
+
```
|
| 387 |
+
|
| 388 |
+
- put words into the pipeline object:
|
| 389 |
+
|
| 390 |
+
```python
|
| 391 |
+
wall_of_text = "your words here"
|
| 392 |
+
|
| 393 |
+
result = summarizer(
|
| 394 |
+
wall_of_text,
|
| 395 |
+
min_length=16,
|
| 396 |
+
max_length=256,
|
| 397 |
+
no_repeat_ngram_size=3,
|
| 398 |
+
encoder_no_repeat_ngram_size=3,
|
| 399 |
+
repetition_penalty=3.5,
|
| 400 |
+
num_beams=4,
|
| 401 |
+
early_stopping=True,
|
| 402 |
+
)
|
| 403 |
+
```
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
**Important:** To generate the best quality summaries, you should use the global attention mask when decoding, as demonstrated in [this community notebook here](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing), see the definition of `generate_answer(batch)`.
|
| 407 |
+
|
| 408 |
+
If having computing constraints, try the base version [`pszemraj/led-base-book-summary`](https://huggingface.co/pszemraj/led-base-book-summary)
|
| 409 |
+
- all the parameters for generation on the API here are the same as [the base model](https://huggingface.co/pszemraj/led-base-book-summary) for easy comparison between versions.
|
| 410 |
+
|
| 411 |
+
## Training and evaluation data
|
| 412 |
+
|
| 413 |
+
- the [booksum](https://arxiv.org/abs/2105.08209) dataset (this is what adds the `bsd-3-clause` license)
|
| 414 |
+
- During training, the input text was the text of the `chapter`, and the output was `summary_text`
|
| 415 |
+
- Eval results can be found [here](https://huggingface.co/datasets/autoevaluate/autoeval-staging-eval-project-kmfoda__booksum-79c1c0d8-10905463) with metrics on the sidebar.
|
| 416 |
+
|
| 417 |
+
## Training procedure
|
| 418 |
+
|
| 419 |
+
- Training completed on the BookSum dataset for 13 total epochs
|
| 420 |
+
- **The final four epochs combined the training and validation sets as 'train' in an effort to increase generalization.**
|
| 421 |
+
|
| 422 |
+
### Training hyperparameters
|
| 423 |
+
|
| 424 |
+
#### Initial Three Epochs
|
| 425 |
+
|
| 426 |
+
The following hyperparameters were used during training:
|
| 427 |
+
- learning_rate: 5e-05
|
| 428 |
+
- train_batch_size: 1
|
| 429 |
+
- eval_batch_size: 1
|
| 430 |
+
- seed: 42
|
| 431 |
+
- distributed_type: multi-GPU
|
| 432 |
+
- gradient_accumulation_steps: 4
|
| 433 |
+
- total_train_batch_size: 4
|
| 434 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 435 |
+
- lr_scheduler_type: linear
|
| 436 |
+
- num_epochs: 3
|
| 437 |
+
|
| 438 |
+
#### In-between Epochs
|
| 439 |
+
|
| 440 |
+
Unfortunately, don't have all records on-hand for middle epochs; the following should be representative:
|
| 441 |
+
|
| 442 |
+
- learning_rate: 4e-05
|
| 443 |
+
- train_batch_size: 2
|
| 444 |
+
- eval_batch_size: 2
|
| 445 |
+
- seed: 42
|
| 446 |
+
- distributed_type: multi-GPU
|
| 447 |
+
- gradient_accumulation_steps: 16
|
| 448 |
+
- total_train_batch_size: 32
|
| 449 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 450 |
+
- lr_scheduler_type: cosine
|
| 451 |
+
- lr_scheduler_warmup_ratio: 0.05
|
| 452 |
+
- num_epochs: 6 (in addition to prior model)
|
| 453 |
+
|
| 454 |
+
#### Final Two Epochs
|
| 455 |
+
|
| 456 |
+
The following hyperparameters were used during training:
|
| 457 |
+
- learning_rate: 2e-05
|
| 458 |
+
- train_batch_size: 1
|
| 459 |
+
- eval_batch_size: 1
|
| 460 |
+
- seed: 42
|
| 461 |
+
- distributed_type: multi-GPU
|
| 462 |
+
- gradient_accumulation_steps: 16
|
| 463 |
+
- total_train_batch_size: 16
|
| 464 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 465 |
+
- lr_scheduler_type: cosine
|
| 466 |
+
- lr_scheduler_warmup_ratio: 0.03
|
| 467 |
+
- num_epochs: 2 (in addition to prior model)
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
### Framework versions
|
| 471 |
+
|
| 472 |
+
- Transformers 4.19.2
|
| 473 |
+
- Pytorch 1.11.0+cu113
|
| 474 |
+
- Datasets 2.2.2
|
| 475 |
+
- Tokenizers 0.12.1
|
config.json
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "pszemraj/led-large-book-summary",
|
| 3 |
+
"_num_labels": 3,
|
| 4 |
+
"activation_dropout": 0.0,
|
| 5 |
+
"activation_function": "gelu",
|
| 6 |
+
"architectures": [
|
| 7 |
+
"LEDForConditionalGeneration"
|
| 8 |
+
],
|
| 9 |
+
"attention_dropout": 0.0,
|
| 10 |
+
"attention_window": [
|
| 11 |
+
1024,
|
| 12 |
+
1024,
|
| 13 |
+
1024,
|
| 14 |
+
1024,
|
| 15 |
+
1024,
|
| 16 |
+
1024,
|
| 17 |
+
1024,
|
| 18 |
+
1024,
|
| 19 |
+
1024,
|
| 20 |
+
1024,
|
| 21 |
+
1024,
|
| 22 |
+
1024
|
| 23 |
+
],
|
| 24 |
+
"bos_token_id": 0,
|
| 25 |
+
"classif_dropout": 0.0,
|
| 26 |
+
"classifier_dropout": 0.0,
|
| 27 |
+
"d_model": 1024,
|
| 28 |
+
"decoder_attention_heads": 16,
|
| 29 |
+
"decoder_ffn_dim": 4096,
|
| 30 |
+
"decoder_layerdrop": 0.0,
|
| 31 |
+
"decoder_layers": 12,
|
| 32 |
+
"decoder_start_token_id": 2,
|
| 33 |
+
"dropout": 0.1,
|
| 34 |
+
"early_stopping": true,
|
| 35 |
+
"encoder_attention_heads": 16,
|
| 36 |
+
"encoder_ffn_dim": 4096,
|
| 37 |
+
"encoder_layerdrop": 0.0,
|
| 38 |
+
"encoder_layers": 12,
|
| 39 |
+
"eos_token_id": 2,
|
| 40 |
+
"id2label": {
|
| 41 |
+
"0": "LABEL_0",
|
| 42 |
+
"1": "LABEL_1",
|
| 43 |
+
"2": "LABEL_2"
|
| 44 |
+
},
|
| 45 |
+
"init_std": 0.02,
|
| 46 |
+
"is_encoder_decoder": true,
|
| 47 |
+
"label2id": {
|
| 48 |
+
"LABEL_0": 0,
|
| 49 |
+
"LABEL_1": 1,
|
| 50 |
+
"LABEL_2": 2
|
| 51 |
+
},
|
| 52 |
+
"length_penalty": 0.8,
|
| 53 |
+
"max_decoder_position_embeddings": 1024,
|
| 54 |
+
"max_encoder_position_embeddings": 16384,
|
| 55 |
+
"max_length": 1024,
|
| 56 |
+
"min_length": 8,
|
| 57 |
+
"model_type": "led",
|
| 58 |
+
"no_repeat_ngram_size": 3,
|
| 59 |
+
"num_beams": 4,
|
| 60 |
+
"num_hidden_layers": 12,
|
| 61 |
+
"output_past": false,
|
| 62 |
+
"pad_token_id": 1,
|
| 63 |
+
"prefix": " ",
|
| 64 |
+
"repetition_penalty": 3.5,
|
| 65 |
+
"torch_dtype": "float32",
|
| 66 |
+
"transformers_version": "4.19.2",
|
| 67 |
+
"use_cache": false,
|
| 68 |
+
"vocab_size": 50265
|
| 69 |
+
}
|
ds_config_zero2.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"amp": {
|
| 3 |
+
"enabled": "auto",
|
| 4 |
+
"opt_level": "auto"
|
| 5 |
+
},
|
| 6 |
+
|
| 7 |
+
"optimizer": {
|
| 8 |
+
"type": "AdamW",
|
| 9 |
+
"params": {
|
| 10 |
+
"lr": "auto",
|
| 11 |
+
"betas": "auto",
|
| 12 |
+
"eps": "auto",
|
| 13 |
+
"weight_decay": "auto"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
"zero_optimization": {
|
| 19 |
+
"stage": 2,
|
| 20 |
+
"offload_optimizer": {
|
| 21 |
+
"device": "cpu",
|
| 22 |
+
"pin_memory": true
|
| 23 |
+
},
|
| 24 |
+
"allgather_partitions": true,
|
| 25 |
+
"allgather_bucket_size": 2e8,
|
| 26 |
+
"overlap_comm": true,
|
| 27 |
+
"reduce_scatter": true,
|
| 28 |
+
"reduce_bucket_size": 2e8,
|
| 29 |
+
"round_robin_gradients": true,
|
| 30 |
+
"contiguous_gradients": true
|
| 31 |
+
},
|
| 32 |
+
|
| 33 |
+
"gradient_accumulation_steps": "auto",
|
| 34 |
+
"gradient_clipping": "auto",
|
| 35 |
+
"steps_per_print": 4000,
|
| 36 |
+
"train_batch_size": "auto",
|
| 37 |
+
"train_micro_batch_size_per_gpu": "auto",
|
| 38 |
+
"wall_clock_breakdown": false
|
| 39 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step296
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6591dc2bafd2bdca9f277d71524cb86a3a637793dc8661e08957b5dd2b52ff15
|
| 3 |
+
size 135
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58f013dc79528514b3c1cce2c180b789f59730e3d4dce985927ddda73bae54d2
|
| 3 |
+
size 130
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "trim_offsets": true, "model_max_length": 16384, "special_tokens_map_file": "/root/.cache/huggingface/transformers/2ad921573d53ebf0c0450d63a211e61d8e328324e84830c365abff01f2d115f1.cb2244924ab24d706b02fd7fcedaea4531566537687a539ebb94db511fd122a0", "name_or_path": "pszemraj/led-large-book-summary", "tokenizer_class": "LEDTokenizer"}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.9914638001896936,
|
| 5 |
+
"global_step": 294,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.05,
|
| 12 |
+
"learning_rate": 7.5e-06,
|
| 13 |
+
"loss": 0.481,
|
| 14 |
+
"step": 5
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.1,
|
| 18 |
+
"learning_rate": 1.5e-05,
|
| 19 |
+
"loss": 0.5091,
|
| 20 |
+
"step": 10
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.15,
|
| 24 |
+
"learning_rate": 2.25e-05,
|
| 25 |
+
"loss": 0.4303,
|
| 26 |
+
"step": 15
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.2,
|
| 30 |
+
"learning_rate": 3e-05,
|
| 31 |
+
"loss": 0.4055,
|
| 32 |
+
"step": 20
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.25,
|
| 36 |
+
"learning_rate": 2.998662940889891e-05,
|
| 37 |
+
"loss": 0.4338,
|
| 38 |
+
"step": 25
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.3,
|
| 42 |
+
"learning_rate": 2.9946541471956496e-05,
|
| 43 |
+
"loss": 0.4793,
|
| 44 |
+
"step": 30
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.35,
|
| 48 |
+
"learning_rate": 2.9879807655761145e-05,
|
| 49 |
+
"loss": 0.4291,
|
| 50 |
+
"step": 35
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.4,
|
| 54 |
+
"learning_rate": 2.9786546929722055e-05,
|
| 55 |
+
"loss": 0.4908,
|
| 56 |
+
"step": 40
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.46,
|
| 60 |
+
"learning_rate": 2.966692555397705e-05,
|
| 61 |
+
"loss": 0.463,
|
| 62 |
+
"step": 45
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"epoch": 0.51,
|
| 66 |
+
"learning_rate": 2.9521156782993066e-05,
|
| 67 |
+
"loss": 0.528,
|
| 68 |
+
"step": 50
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 0.56,
|
| 72 |
+
"learning_rate": 2.9349500485387718e-05,
|
| 73 |
+
"loss": 0.5178,
|
| 74 |
+
"step": 55
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.61,
|
| 78 |
+
"learning_rate": 2.9152262680649704e-05,
|
| 79 |
+
"loss": 0.4602,
|
| 80 |
+
"step": 60
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.66,
|
| 84 |
+
"learning_rate": 2.8929794993583937e-05,
|
| 85 |
+
"loss": 0.5044,
|
| 86 |
+
"step": 65
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.71,
|
| 90 |
+
"learning_rate": 2.8682494027454e-05,
|
| 91 |
+
"loss": 0.4217,
|
| 92 |
+
"step": 70
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"epoch": 0.76,
|
| 96 |
+
"learning_rate": 2.8410800656939512e-05,
|
| 97 |
+
"loss": 0.502,
|
| 98 |
+
"step": 75
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.81,
|
| 102 |
+
"learning_rate": 2.811519924216873e-05,
|
| 103 |
+
"loss": 0.4549,
|
| 104 |
+
"step": 80
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 0.86,
|
| 108 |
+
"learning_rate": 2.779621676522777e-05,
|
| 109 |
+
"loss": 0.5692,
|
| 110 |
+
"step": 85
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.91,
|
| 114 |
+
"learning_rate": 2.7454421890685647e-05,
|
| 115 |
+
"loss": 0.4312,
|
| 116 |
+
"step": 90
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.96,
|
| 120 |
+
"learning_rate": 2.709042395181008e-05,
|
| 121 |
+
"loss": 0.4938,
|
| 122 |
+
"step": 95
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 1.02,
|
| 126 |
+
"learning_rate": 2.6704871864281377e-05,
|
| 127 |
+
"loss": 0.5433,
|
| 128 |
+
"step": 100
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 1.07,
|
| 132 |
+
"learning_rate": 2.6298452969340952e-05,
|
| 133 |
+
"loss": 0.3459,
|
| 134 |
+
"step": 105
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 1.12,
|
| 138 |
+
"learning_rate": 2.58718918084368e-05,
|
| 139 |
+
"loss": 0.3739,
|
| 140 |
+
"step": 110
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 1.17,
|
| 144 |
+
"learning_rate": 2.5425948831550528e-05,
|
| 145 |
+
"loss": 0.375,
|
| 146 |
+
"step": 115
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 1.22,
|
| 150 |
+
"learning_rate": 2.496141904150859e-05,
|
| 151 |
+
"loss": 0.3809,
|
| 152 |
+
"step": 120
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 1.27,
|
| 156 |
+
"learning_rate": 2.447913057669456e-05,
|
| 157 |
+
"loss": 0.4183,
|
| 158 |
+
"step": 125
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 1.32,
|
| 162 |
+
"learning_rate": 2.3979943234689226e-05,
|
| 163 |
+
"loss": 0.4207,
|
| 164 |
+
"step": 130
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 1.37,
|
| 168 |
+
"learning_rate": 2.3464746939470288e-05,
|
| 169 |
+
"loss": 0.3767,
|
| 170 |
+
"step": 135
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 1.42,
|
| 174 |
+
"learning_rate": 2.2934460154904436e-05,
|
| 175 |
+
"loss": 0.4248,
|
| 176 |
+
"step": 140
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 1.48,
|
| 180 |
+
"learning_rate": 2.2390028247360042e-05,
|
| 181 |
+
"loss": 0.3374,
|
| 182 |
+
"step": 145
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 1.53,
|
| 186 |
+
"learning_rate": 2.183242180035951e-05,
|
| 187 |
+
"loss": 0.4582,
|
| 188 |
+
"step": 150
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 1.58,
|
| 192 |
+
"learning_rate": 2.1262634884275948e-05,
|
| 193 |
+
"loss": 0.4153,
|
| 194 |
+
"step": 155
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 1.63,
|
| 198 |
+
"learning_rate": 2.068168328415864e-05,
|
| 199 |
+
"loss": 0.409,
|
| 200 |
+
"step": 160
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 1.68,
|
| 204 |
+
"learning_rate": 2.0090602688846884e-05,
|
| 205 |
+
"loss": 0.4023,
|
| 206 |
+
"step": 165
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 1.73,
|
| 210 |
+
"learning_rate": 1.9490446844600375e-05,
|
| 211 |
+
"loss": 0.3426,
|
| 212 |
+
"step": 170
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 1.78,
|
| 216 |
+
"learning_rate": 1.888228567653781e-05,
|
| 217 |
+
"loss": 0.4059,
|
| 218 |
+
"step": 175
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 1.83,
|
| 222 |
+
"learning_rate": 1.8267203381232774e-05,
|
| 223 |
+
"loss": 0.4449,
|
| 224 |
+
"step": 180
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 1.88,
|
| 228 |
+
"learning_rate": 1.764629649386713e-05,
|
| 229 |
+
"loss": 0.4362,
|
| 230 |
+
"step": 185
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 1.93,
|
| 234 |
+
"learning_rate": 1.7020671933387917e-05,
|
| 235 |
+
"loss": 0.4874,
|
| 236 |
+
"step": 190
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 1.98,
|
| 240 |
+
"learning_rate": 1.63914450291526e-05,
|
| 241 |
+
"loss": 0.3326,
|
| 242 |
+
"step": 195
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 2.04,
|
| 246 |
+
"learning_rate": 1.5633197410233404e-05,
|
| 247 |
+
"loss": 0.4035,
|
| 248 |
+
"step": 200
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 2.09,
|
| 252 |
+
"learning_rate": 1.5e-05,
|
| 253 |
+
"loss": 0.3291,
|
| 254 |
+
"step": 205
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 2.14,
|
| 258 |
+
"learning_rate": 1.4366802589766598e-05,
|
| 259 |
+
"loss": 0.353,
|
| 260 |
+
"step": 210
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 2.19,
|
| 264 |
+
"learning_rate": 1.373473400935433e-05,
|
| 265 |
+
"loss": 0.319,
|
| 266 |
+
"step": 215
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 2.24,
|
| 270 |
+
"learning_rate": 1.3104921076168065e-05,
|
| 271 |
+
"loss": 0.341,
|
| 272 |
+
"step": 220
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 2.29,
|
| 276 |
+
"learning_rate": 1.247848658636778e-05,
|
| 277 |
+
"loss": 0.3276,
|
| 278 |
+
"step": 225
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 2.34,
|
| 282 |
+
"learning_rate": 1.185654731320877e-05,
|
| 283 |
+
"loss": 0.3628,
|
| 284 |
+
"step": 230
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 2.39,
|
| 288 |
+
"learning_rate": 1.124021201611919e-05,
|
| 289 |
+
"loss": 0.2727,
|
| 290 |
+
"step": 235
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 2.45,
|
| 294 |
+
"learning_rate": 1.0630579464064182e-05,
|
| 295 |
+
"loss": 0.3466,
|
| 296 |
+
"step": 240
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 2.5,
|
| 300 |
+
"learning_rate": 1.0028736476720464e-05,
|
| 301 |
+
"loss": 0.3187,
|
| 302 |
+
"step": 245
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 2.55,
|
| 306 |
+
"learning_rate": 9.435755986953485e-06,
|
| 307 |
+
"loss": 0.3837,
|
| 308 |
+
"step": 250
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 2.6,
|
| 312 |
+
"learning_rate": 8.852695128051192e-06,
|
| 313 |
+
"loss": 0.2955,
|
| 314 |
+
"step": 255
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 2.65,
|
| 318 |
+
"learning_rate": 8.280593349124432e-06,
|
| 319 |
+
"loss": 0.3793,
|
| 320 |
+
"step": 260
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 2.7,
|
| 324 |
+
"learning_rate": 7.720470562033787e-06,
|
| 325 |
+
"loss": 0.3443,
|
| 326 |
+
"step": 265
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 2.75,
|
| 330 |
+
"learning_rate": 7.17332532314626e-06,
|
| 331 |
+
"loss": 0.2915,
|
| 332 |
+
"step": 270
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 2.8,
|
| 336 |
+
"learning_rate": 6.640133053163455e-06,
|
| 337 |
+
"loss": 0.3514,
|
| 338 |
+
"step": 275
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 2.85,
|
| 342 |
+
"learning_rate": 6.12184429819474e-06,
|
| 343 |
+
"loss": 0.3221,
|
| 344 |
+
"step": 280
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"epoch": 2.9,
|
| 348 |
+
"learning_rate": 5.619383035175448e-06,
|
| 349 |
+
"loss": 0.2903,
|
| 350 |
+
"step": 285
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 2.95,
|
| 354 |
+
"learning_rate": 5.133645024651171e-06,
|
| 355 |
+
"loss": 0.3397,
|
| 356 |
+
"step": 290
|
| 357 |
+
}
|
| 358 |
+
],
|
| 359 |
+
"max_steps": 392,
|
| 360 |
+
"num_train_epochs": 4,
|
| 361 |
+
"total_flos": 1.821325738775675e+17,
|
| 362 |
+
"trial_name": null,
|
| 363 |
+
"trial_params": null
|
| 364 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:401745ea2f5f8bc223616c82c7bae7b501398125eba6ecd872c79ffcc7abc266
|
| 3 |
+
size 129
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 6 |
+
# application.
|
| 7 |
+
#
|
| 8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 9 |
+
|
| 10 |
+
import argparse
|
| 11 |
+
import torch
|
| 12 |
+
import glob
|
| 13 |
+
import math
|
| 14 |
+
import os
|
| 15 |
+
import re
|
| 16 |
+
from collections import OrderedDict
|
| 17 |
+
|
| 18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 20 |
+
import deepspeed
|
| 21 |
+
from deepspeed.utils import logger
|
| 22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
| 23 |
+
OPTIMIZER_STATE_DICT,
|
| 24 |
+
PARAM_SHAPES,
|
| 25 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 26 |
+
FP32_FLAT_GROUPS,
|
| 27 |
+
ZERO_STAGE,
|
| 28 |
+
PARTITION_COUNT,
|
| 29 |
+
PARAM_SHAPES,
|
| 30 |
+
BUFFER_NAMES)
|
| 31 |
+
|
| 32 |
+
debug = 0
|
| 33 |
+
|
| 34 |
+
# load to cpu
|
| 35 |
+
device = torch.device('cpu')
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def atoi(text):
|
| 39 |
+
return int(text) if text.isdigit() else text
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def natural_keys(text):
|
| 43 |
+
'''
|
| 44 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 45 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 46 |
+
(See Toothy's implementation in the comments)
|
| 47 |
+
'''
|
| 48 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 52 |
+
if not os.path.isdir(checkpoint_dir):
|
| 53 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 54 |
+
|
| 55 |
+
# there should be only one file
|
| 56 |
+
if zero_stage == 2:
|
| 57 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 58 |
+
elif zero_stage == 3:
|
| 59 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 60 |
+
|
| 61 |
+
if not os.path.exists(file):
|
| 62 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 63 |
+
|
| 64 |
+
return file
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_optim_files(checkpoint_dir):
|
| 68 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 69 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
| 70 |
+
"*_optim_states.pt")),
|
| 71 |
+
key=natural_keys)
|
| 72 |
+
|
| 73 |
+
if len(optim_files) == 0:
|
| 74 |
+
raise FileNotFoundError(
|
| 75 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
| 76 |
+
|
| 77 |
+
return optim_files
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def parse_model_state(file):
|
| 81 |
+
state_dict = torch.load(file, map_location=device)
|
| 82 |
+
|
| 83 |
+
if BUFFER_NAMES not in state_dict:
|
| 84 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 85 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 86 |
+
if debug:
|
| 87 |
+
print("Found buffers:", buffer_names)
|
| 88 |
+
|
| 89 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 90 |
+
buffers = {
|
| 91 |
+
k: v.float()
|
| 92 |
+
for k,
|
| 93 |
+
v in state_dict["module"].items() if k in buffer_names
|
| 94 |
+
}
|
| 95 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 96 |
+
|
| 97 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 98 |
+
|
| 99 |
+
return buffers, param_shapes, ds_version
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 103 |
+
|
| 104 |
+
total_files = len(files)
|
| 105 |
+
state_dicts = []
|
| 106 |
+
for f in files:
|
| 107 |
+
state_dicts.append(torch.load(f, map_location=device))
|
| 108 |
+
|
| 109 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 110 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 111 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 112 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 113 |
+
|
| 114 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 115 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 116 |
+
# use the max of the partition_count to get the dp world_size.
|
| 117 |
+
|
| 118 |
+
if type(world_size) is list:
|
| 119 |
+
world_size = max(world_size)
|
| 120 |
+
|
| 121 |
+
if world_size != total_files:
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 124 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# the groups are named differently in each stage
|
| 128 |
+
if zero_stage == 2:
|
| 129 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 130 |
+
elif zero_stage == 3:
|
| 131 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 132 |
+
else:
|
| 133 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 134 |
+
|
| 135 |
+
if zero_stage == 2:
|
| 136 |
+
fp32_flat_groups = [
|
| 137 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
| 138 |
+
for i in range(len(state_dicts))
|
| 139 |
+
]
|
| 140 |
+
elif zero_stage == 3:
|
| 141 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 142 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 143 |
+
#
|
| 144 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 145 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 146 |
+
|
| 147 |
+
fp32_flat_groups = [
|
| 148 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
| 149 |
+
0) for i in range(len(state_dicts))
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 156 |
+
"""
|
| 157 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 161 |
+
|
| 162 |
+
"""
|
| 163 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 164 |
+
|
| 165 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 166 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 167 |
+
print(
|
| 168 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 169 |
+
|
| 170 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
| 171 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
| 172 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
| 173 |
+
|
| 174 |
+
if zero_stage == 2:
|
| 175 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
| 176 |
+
param_shapes,
|
| 177 |
+
fp32_flat_groups,
|
| 178 |
+
buffers)
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
| 181 |
+
param_shapes,
|
| 182 |
+
fp32_flat_groups,
|
| 183 |
+
buffers)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
| 187 |
+
param_shapes,
|
| 188 |
+
fp32_flat_groups,
|
| 189 |
+
buffers):
|
| 190 |
+
|
| 191 |
+
# Reconstruction protocol:
|
| 192 |
+
#
|
| 193 |
+
# XXX: document this
|
| 194 |
+
|
| 195 |
+
if debug:
|
| 196 |
+
for i in range(world_size):
|
| 197 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 198 |
+
print(
|
| 199 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 200 |
+
|
| 201 |
+
# XXX: memory usage doubles here (zero2)
|
| 202 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 203 |
+
merged_single_partition_of_fp32_groups = []
|
| 204 |
+
for i in range(num_param_groups):
|
| 205 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 206 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 207 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 208 |
+
avail_numel = sum([
|
| 209 |
+
full_single_fp32_vector.numel()
|
| 210 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
| 211 |
+
])
|
| 212 |
+
|
| 213 |
+
if debug:
|
| 214 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 215 |
+
wanted_numel = sum(
|
| 216 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 217 |
+
# not asserting if there is a mismatch due to possible padding
|
| 218 |
+
print(f"Have {avail_numel} numels to process.")
|
| 219 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 220 |
+
|
| 221 |
+
state_dict = OrderedDict()
|
| 222 |
+
|
| 223 |
+
# buffers
|
| 224 |
+
state_dict.update(buffers)
|
| 225 |
+
if debug:
|
| 226 |
+
print(f"added {len(buffers)} buffers")
|
| 227 |
+
|
| 228 |
+
# params
|
| 229 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 230 |
+
# out-of-core computing solution
|
| 231 |
+
total_numel = 0
|
| 232 |
+
total_params = 0
|
| 233 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 234 |
+
offset = 0
|
| 235 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 236 |
+
for name, shape in shapes.items():
|
| 237 |
+
|
| 238 |
+
unpartitioned_numel = shape.numel()
|
| 239 |
+
total_numel += unpartitioned_numel
|
| 240 |
+
total_params += 1
|
| 241 |
+
|
| 242 |
+
if debug:
|
| 243 |
+
print(
|
| 244 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
| 245 |
+
)
|
| 246 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
| 247 |
+
0,
|
| 248 |
+
offset,
|
| 249 |
+
unpartitioned_numel).view(shape)
|
| 250 |
+
offset += unpartitioned_numel
|
| 251 |
+
|
| 252 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 253 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 254 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 255 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 256 |
+
align_to = 2 * world_size
|
| 257 |
+
|
| 258 |
+
def zero2_align(x):
|
| 259 |
+
return align_to * math.ceil(x / align_to)
|
| 260 |
+
|
| 261 |
+
if debug:
|
| 262 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 263 |
+
|
| 264 |
+
offset = zero2_align(offset)
|
| 265 |
+
avail_numel = zero2_align(avail_numel)
|
| 266 |
+
|
| 267 |
+
if debug:
|
| 268 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 269 |
+
|
| 270 |
+
# Sanity check
|
| 271 |
+
if offset != avail_numel:
|
| 272 |
+
raise ValueError(
|
| 273 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 274 |
+
|
| 275 |
+
print(
|
| 276 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
return state_dict
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 283 |
+
remainder = unpartitioned_numel % world_size
|
| 284 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 285 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 286 |
+
return partitioned_numel, padding_numel
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
| 290 |
+
param_shapes,
|
| 291 |
+
fp32_flat_groups,
|
| 292 |
+
buffers):
|
| 293 |
+
|
| 294 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 295 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 296 |
+
|
| 297 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 298 |
+
# merge list of dicts, preserving order
|
| 299 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
for i in range(world_size):
|
| 303 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 304 |
+
|
| 305 |
+
wanted_params = len(param_shapes)
|
| 306 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 307 |
+
# not asserting if there is a mismatch due to possible padding
|
| 308 |
+
print(f"Have {avail_numel} numels to process.")
|
| 309 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 310 |
+
|
| 311 |
+
state_dict = OrderedDict()
|
| 312 |
+
|
| 313 |
+
# buffers
|
| 314 |
+
state_dict.update(buffers)
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"added {len(buffers)} buffers")
|
| 317 |
+
|
| 318 |
+
# params
|
| 319 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 320 |
+
# out-of-core computing solution
|
| 321 |
+
offset = 0
|
| 322 |
+
total_numel = 0
|
| 323 |
+
total_params = 0
|
| 324 |
+
for name, shape in param_shapes.items():
|
| 325 |
+
|
| 326 |
+
unpartitioned_numel = shape.numel()
|
| 327 |
+
total_numel += unpartitioned_numel
|
| 328 |
+
total_params += 1
|
| 329 |
+
|
| 330 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 331 |
+
|
| 332 |
+
if debug:
|
| 333 |
+
print(
|
| 334 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# XXX: memory usage doubles here
|
| 338 |
+
state_dict[name] = torch.cat(
|
| 339 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
| 340 |
+
offset,
|
| 341 |
+
partitioned_numel)
|
| 342 |
+
for i in range(world_size)),
|
| 343 |
+
0).narrow(0,
|
| 344 |
+
0,
|
| 345 |
+
unpartitioned_numel).view(shape)
|
| 346 |
+
offset += partitioned_numel
|
| 347 |
+
|
| 348 |
+
offset *= world_size
|
| 349 |
+
|
| 350 |
+
# Sanity check
|
| 351 |
+
if offset != avail_numel:
|
| 352 |
+
raise ValueError(
|
| 353 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 354 |
+
|
| 355 |
+
print(
|
| 356 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
return state_dict
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 363 |
+
"""
|
| 364 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 365 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 366 |
+
via a model hub.
|
| 367 |
+
|
| 368 |
+
Args:
|
| 369 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 370 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 371 |
+
|
| 372 |
+
Returns:
|
| 373 |
+
- pytorch ``state_dict``
|
| 374 |
+
|
| 375 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 376 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 377 |
+
the checkpoint.
|
| 378 |
+
|
| 379 |
+
A typical usage might be ::
|
| 380 |
+
|
| 381 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 382 |
+
# do the training and checkpoint saving
|
| 383 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 384 |
+
model = model.cpu() # move to cpu
|
| 385 |
+
model.load_state_dict(state_dict)
|
| 386 |
+
# submit to model hub or save the model to share with others
|
| 387 |
+
|
| 388 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 389 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 390 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 391 |
+
|
| 392 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 393 |
+
|
| 394 |
+
"""
|
| 395 |
+
if tag is None:
|
| 396 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 397 |
+
if os.path.isfile(latest_path):
|
| 398 |
+
with open(latest_path, 'r') as fd:
|
| 399 |
+
tag = fd.read().strip()
|
| 400 |
+
else:
|
| 401 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 402 |
+
|
| 403 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 404 |
+
|
| 405 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 406 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 407 |
+
|
| 408 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 412 |
+
"""
|
| 413 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 414 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 415 |
+
|
| 416 |
+
Args:
|
| 417 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 418 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 419 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 420 |
+
"""
|
| 421 |
+
|
| 422 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 423 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 424 |
+
torch.save(state_dict, output_file)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 428 |
+
"""
|
| 429 |
+
1. Put the provided model to cpu
|
| 430 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 431 |
+
3. Load it into the provided model
|
| 432 |
+
|
| 433 |
+
Args:
|
| 434 |
+
- ``model``: the model object to update
|
| 435 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 436 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 437 |
+
|
| 438 |
+
Returns:
|
| 439 |
+
- ``model`: modified model
|
| 440 |
+
|
| 441 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 442 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 443 |
+
conveniently placed for you in the checkpoint folder.
|
| 444 |
+
|
| 445 |
+
A typical usage might be ::
|
| 446 |
+
|
| 447 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 448 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 449 |
+
# submit to model hub or save the model to share with others
|
| 450 |
+
|
| 451 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 452 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 453 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 454 |
+
|
| 455 |
+
"""
|
| 456 |
+
logger.info(f"Extracting fp32 weights")
|
| 457 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 458 |
+
|
| 459 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 460 |
+
model = model.cpu()
|
| 461 |
+
model.load_state_dict(state_dict, strict=False)
|
| 462 |
+
|
| 463 |
+
return model
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
if __name__ == "__main__":
|
| 467 |
+
|
| 468 |
+
parser = argparse.ArgumentParser()
|
| 469 |
+
parser.add_argument(
|
| 470 |
+
"checkpoint_dir",
|
| 471 |
+
type=str,
|
| 472 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 473 |
+
parser.add_argument(
|
| 474 |
+
"output_file",
|
| 475 |
+
type=str,
|
| 476 |
+
help=
|
| 477 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
| 478 |
+
)
|
| 479 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 480 |
+
args = parser.parse_args()
|
| 481 |
+
|
| 482 |
+
debug = args.debug
|
| 483 |
+
|
| 484 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|