--- tags: - image-classification - timm - transformers - animetimm - dghs-imgutils library_name: timm license: gpl-3.0 datasets: - animetimm/danbooru-wdtagger-v4-w640-ws-full base_model: - timm/resnet152.a1h_in1k --- # Anime Tagger resnet152.dbv4-full ## Model Details - **Model Type:** Multilabel Image classification / feature backbone - **Model Stats:** - Params: 83.7M - FLOPs / MACs: 67.9G / 33.9G - Image size: train = 384 x 384, test = 384 x 384 - **Dataset:** [animetimm/danbooru-wdtagger-v4-w640-ws-full](https://huggingface.co/datasets/animetimm/danbooru-wdtagger-v4-w640-ws-full) - Tags Count: 12476 - General (#0) Tags Count: 9225 - Character (#4) Tags Count: 3247 - Rating (#9) Tags Count: 4 ## Results | # | Macro@0.40 (F1/MCC/P/R) | Micro@0.40 (F1/MCC/P/R) | Macro@Best (F1/P/R) | |:----------:|:-----------------------------:|:-----------------------------:|:---------------------:| | Validation | 0.446 / 0.455 / 0.526 / 0.412 | 0.624 / 0.623 / 0.657 / 0.593 | --- | | Test | 0.448 / 0.456 / 0.526 / 0.413 | 0.624 / 0.624 / 0.657 / 0.594 | 0.486 / 0.513 / 0.488 | * `Macro/Micro@0.40` means the metrics on the threshold 0.40. * `Macro@Best` means the mean metrics on the tag-level thresholds on each tags, which should have the best F1 scores. ## Thresholds | Category | Name | Alpha | Threshold | Micro@Thr (F1/P/R) | Macro@0.40 (F1/P/R) | Macro@Best (F1/P/R) | |:----------:|:---------:|:-------:|:-----------:|:---------------------:|:---------------------:|:---------------------:| | 0 | general | 1 | 0.35 | 0.612 / 0.617 / 0.608 | 0.319 / 0.410 / 0.283 | 0.364 / 0.379 / 0.381 | | 4 | character | 1 | 0.48 | 0.846 / 0.903 / 0.795 | 0.813 / 0.855 / 0.781 | 0.835 / 0.895 / 0.791 | | 9 | rating | 1 | 0.38 | 0.796 / 0.744 / 0.856 | 0.803 / 0.778 / 0.836 | 0.806 / 0.778 / 0.839 | * `Micro@Thr` means the metrics on the category-level suggested thresholds, which are listed in the table above. * `Macro@0.40` means the metrics on the threshold 0.40. * `Macro@Best` means the metrics on the tag-level thresholds on each tags, which should have the best F1 scores. For tag-level thresholds, you can find them in [selected_tags.csv](https://huggingface.co/animetimm/resnet152.dbv4-full/resolve/main/selected_tags.csv). ## How to Use We provided a sample image for our code samples, you can find it [here](https://huggingface.co/animetimm/resnet152.dbv4-full/blob/main/sample.webp). ### Use TIMM And Torch Install [dghs-imgutils](https://github.com/deepghs/imgutils), [timm](https://github.com/huggingface/pytorch-image-models) and other necessary requirements with the following command ```shell pip install 'dghs-imgutils>=0.17.0' torch huggingface_hub timm pillow pandas ``` After that you can load this model with timm library, and use it for train, validation and test, with the following code ```python import json import pandas as pd import torch from huggingface_hub import hf_hub_download from imgutils.data import load_image from imgutils.preprocess import create_torchvision_transforms from timm import create_model repo_id = 'animetimm/resnet152.dbv4-full' model = create_model(f'hf-hub:{repo_id}', pretrained=True) model.eval() with open(hf_hub_download(repo_id=repo_id, repo_type='model', filename='preprocess.json'), 'r') as f: preprocessor = create_torchvision_transforms(json.load(f)['test']) # Compose( # PadToSize(size=(512, 512), interpolation=bilinear, background_color=white) # Resize(size=384, interpolation=bicubic, max_size=None, antialias=True) # CenterCrop(size=[384, 384]) # MaybeToTensor() # Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) # ) image = load_image('https://huggingface.co/animetimm/resnet152.dbv4-full/resolve/main/sample.webp') input_ = preprocessor(image).unsqueeze(0) # input_, shape: torch.Size([1, 3, 384, 384]), dtype: torch.float32 with torch.no_grad(): output = model(input_) prediction = torch.sigmoid(output)[0] # output, shape: torch.Size([1, 12476]), dtype: torch.float32 # prediction, shape: torch.Size([12476]), dtype: torch.float32 df_tags = pd.read_csv( hf_hub_download(repo_id=repo_id, repo_type='model', filename='selected_tags.csv'), keep_default_na=False ) tags = df_tags['name'] mask = prediction.numpy() >= df_tags['best_threshold'] print(dict(zip(tags[mask].tolist(), prediction[mask].tolist()))) # {'general': 0.5816617608070374, # 'sensitive': 0.4577067196369171, # '1girl': 0.9958261251449585, # 'solo': 0.9633037447929382, # 'looking_at_viewer': 0.8500308990478516, # 'blush': 0.8500121831893921, # 'smile': 0.9115327596664429, # 'short_hair': 0.7201621532440186, # 'shirt': 0.6373851299285889, # 'long_sleeves': 0.8233276605606079, # 'holding': 0.718224823474884, # 'dress': 0.5167701840400696, # 'closed_mouth': 0.5078815221786499, # 'purple_eyes': 0.6588500142097473, # 'upper_body': 0.30264830589294434, # 'flower': 0.9456981420516968, # 'braid': 0.9781820774078369, # 'outdoors': 0.3688752353191376, # 'red_hair': 0.7415601015090942, # 'blunt_bangs': 0.4880999028682709, # 'apron': 0.6254206299781799, # 'plant': 0.33948495984077454, # 'blue_flower': 0.9264647364616394, # 'backlighting': 0.14451347291469574, # 'crown_braid': 0.8123992681503296, # 'potted_plant': 0.2292894870042801, # 'flower_pot': 0.29513847827911377, # 'wiping_tears': 0.46064630150794983} ``` ### Use ONNX Model For Inference Install [dghs-imgutils](https://github.com/deepghs/imgutils) with the following command ```shell pip install 'dghs-imgutils>=0.17.0' ``` Use `multilabel_timm_predict` function with the following code ```python from imgutils.generic import multilabel_timm_predict general, character, rating = multilabel_timm_predict( 'https://huggingface.co/animetimm/resnet152.dbv4-full/resolve/main/sample.webp', repo_id='animetimm/resnet152.dbv4-full', fmt=('general', 'character', 'rating'), ) print(general) # {'1girl': 0.9958261251449585, # 'braid': 0.9781820774078369, # 'solo': 0.9633036851882935, # 'flower': 0.9456979632377625, # 'blue_flower': 0.926464855670929, # 'smile': 0.9115328788757324, # 'looking_at_viewer': 0.8500310778617859, # 'blush': 0.8500126600265503, # 'long_sleeves': 0.8233274221420288, # 'crown_braid': 0.8123989105224609, # 'red_hair': 0.7415597438812256, # 'short_hair': 0.7201613783836365, # 'holding': 0.7182247638702393, # 'purple_eyes': 0.6588503122329712, # 'shirt': 0.6373854279518127, # 'apron': 0.6254194974899292, # 'dress': 0.516771137714386, # 'closed_mouth': 0.5078825354576111, # 'blunt_bangs': 0.4881010055541992, # 'wiping_tears': 0.46064335107803345, # 'outdoors': 0.36887407302856445, # 'plant': 0.3394850194454193, # 'upper_body': 0.3026488721370697, # 'flower_pot': 0.29513871669769287, # 'potted_plant': 0.22929036617279053, # 'backlighting': 0.14451327919960022} print(character) # {} print(rating) # {'general': 0.5816621780395508, 'sensitive': 0.45770588517189026} ``` For further information, see [documentation of function multilabel_timm_predict](https://dghs-imgutils.deepghs.org/main/api_doc/generic/multilabel_timm.html#multilabel-timm-predict).