Update README.md
Browse filesCommenting out the expired image link
README.md
CHANGED
|
@@ -102,10 +102,12 @@ model-index:
|
|
| 102 |
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
| 103 |
name: Open LLM Leaderboard
|
| 104 |
---
|
|
|
|
|
|
|
| 105 |
<div align="center">
|
| 106 |
<img src="https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png" alt="Llama-3.1-SuperNova-Lite" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
|
| 107 |
</div>
|
| 108 |
-
|
| 109 |
## Overview
|
| 110 |
|
| 111 |
Llama-3.1-SuperNova-Lite is an 8B parameter model developed by Arcee.ai, based on the Llama-3.1-8B-Instruct architecture. It is a distilled version of the larger Llama-3.1-405B-Instruct model, leveraging offline logits extracted from the 405B parameter variant. This 8B variation of Llama-3.1-SuperNova maintains high performance while offering exceptional instruction-following capabilities and domain-specific adaptability.
|
|
|
|
| 102 |
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
| 103 |
name: Open LLM Leaderboard
|
| 104 |
---
|
| 105 |
+
|
| 106 |
+
<!--
|
| 107 |
<div align="center">
|
| 108 |
<img src="https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png" alt="Llama-3.1-SuperNova-Lite" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
|
| 109 |
</div>
|
| 110 |
+
-->
|
| 111 |
## Overview
|
| 112 |
|
| 113 |
Llama-3.1-SuperNova-Lite is an 8B parameter model developed by Arcee.ai, based on the Llama-3.1-8B-Instruct architecture. It is a distilled version of the larger Llama-3.1-405B-Instruct model, leveraging offline logits extracted from the 405B parameter variant. This 8B variation of Llama-3.1-SuperNova maintains high performance while offering exceptional instruction-following capabilities and domain-specific adaptability.
|