update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: bert-base-cased
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- precision
|
| 8 |
+
- recall
|
| 9 |
+
- f1
|
| 10 |
+
- accuracy
|
| 11 |
+
model-index:
|
| 12 |
+
- name: bert
|
| 13 |
+
results: []
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
+
|
| 19 |
+
# bert
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
| 22 |
+
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.3752
|
| 24 |
+
- Precision: 0.5495
|
| 25 |
+
- Recall: 0.5949
|
| 26 |
+
- F1: 0.5713
|
| 27 |
+
- Accuracy: 0.9455
|
| 28 |
+
|
| 29 |
+
## Model description
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Intended uses & limitations
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Training and evaluation data
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Training procedure
|
| 42 |
+
|
| 43 |
+
### Training hyperparameters
|
| 44 |
+
|
| 45 |
+
The following hyperparameters were used during training:
|
| 46 |
+
- learning_rate: 0.0001
|
| 47 |
+
- train_batch_size: 32
|
| 48 |
+
- eval_batch_size: 8
|
| 49 |
+
- seed: 42
|
| 50 |
+
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
|
| 51 |
+
- lr_scheduler_type: linear
|
| 52 |
+
- num_epochs: 20
|
| 53 |
+
|
| 54 |
+
### Training results
|
| 55 |
+
|
| 56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 58 |
+
| No log | 1.0 | 151 | 0.1826 | 0.4095 | 0.4084 | 0.4089 | 0.9362 |
|
| 59 |
+
| No log | 2.0 | 302 | 0.1684 | 0.4941 | 0.5303 | 0.5116 | 0.9442 |
|
| 60 |
+
| No log | 3.0 | 453 | 0.2528 | 0.5197 | 0.4477 | 0.4810 | 0.9398 |
|
| 61 |
+
| 0.1001 | 4.0 | 604 | 0.2100 | 0.5182 | 0.5583 | 0.5375 | 0.9439 |
|
| 62 |
+
| 0.1001 | 5.0 | 755 | 0.2556 | 0.5207 | 0.4783 | 0.4986 | 0.9419 |
|
| 63 |
+
| 0.1001 | 6.0 | 906 | 0.2908 | 0.4132 | 0.4204 | 0.4168 | 0.9365 |
|
| 64 |
+
| 0.0205 | 7.0 | 1057 | 0.3046 | 0.5 | 0.6236 | 0.5550 | 0.9435 |
|
| 65 |
+
| 0.0205 | 8.0 | 1208 | 0.3057 | 0.5324 | 0.5750 | 0.5529 | 0.9458 |
|
| 66 |
+
| 0.0205 | 9.0 | 1359 | 0.3122 | 0.5626 | 0.5776 | 0.5700 | 0.9469 |
|
| 67 |
+
| 0.0082 | 10.0 | 1510 | 0.3673 | 0.5733 | 0.5263 | 0.5488 | 0.9441 |
|
| 68 |
+
| 0.0082 | 11.0 | 1661 | 0.3432 | 0.5482 | 0.5270 | 0.5374 | 0.9455 |
|
| 69 |
+
| 0.0082 | 12.0 | 1812 | 0.3305 | 0.5590 | 0.5716 | 0.5652 | 0.9445 |
|
| 70 |
+
| 0.0082 | 13.0 | 1963 | 0.3293 | 0.5434 | 0.6009 | 0.5707 | 0.9431 |
|
| 71 |
+
| 0.005 | 14.0 | 2114 | 0.4080 | 0.5627 | 0.5803 | 0.5713 | 0.9451 |
|
| 72 |
+
| 0.005 | 15.0 | 2265 | 0.3752 | 0.5495 | 0.5949 | 0.5713 | 0.9455 |
|
| 73 |
+
| 0.005 | 16.0 | 2416 | 0.4140 | 0.5823 | 0.5470 | 0.5641 | 0.9455 |
|
| 74 |
+
| 0.002 | 17.0 | 2567 | 0.4308 | 0.5555 | 0.5670 | 0.5612 | 0.9438 |
|
| 75 |
+
| 0.002 | 18.0 | 2718 | 0.4389 | 0.5594 | 0.5676 | 0.5635 | 0.9436 |
|
| 76 |
+
| 0.002 | 19.0 | 2869 | 0.4463 | 0.5609 | 0.5676 | 0.5642 | 0.9444 |
|
| 77 |
+
| 0.0007 | 20.0 | 3020 | 0.4512 | 0.5648 | 0.5636 | 0.5642 | 0.9448 |
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
### Framework versions
|
| 81 |
+
|
| 82 |
+
- Transformers 4.31.0
|
| 83 |
+
- Pytorch 2.0.1+cu117
|
| 84 |
+
- Datasets 2.14.2
|
| 85 |
+
- Tokenizers 0.13.3
|