--- license: mit language: - de base_model: - deepset/gbert-large --- # Autor-Regulatory Focus Classifier (German) This model is a fine-tuned transformer-based classifier that detects the **regulatory focus** in German-language text, classifying whether the language expresses a **promotion** (aspirational, growth-oriented) or **prevention** (safety, obligation-oriented) focus. It is fine-tuned on top of a German-language base model for the task of binary text classification. ## Model Details - **Base model**: `deepset/gbert-large` - **Fine-tuned for**: Binary classification (Regulatory Focus) - **Language**: German - **Framework**: Hugging Face Transformers - **Model format**: `safetensors` ## Use Cases - Social psychology and communication research - Marketing and consumer behavior analysis - Literary or political discourse analysis - Behavioral modeling and goal orientation profiling ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained("aveluth/author_regulatory_focus_classifier") tokenizer = AutoTokenizer.from_pretrained("aveluth/author_regulatory_focus_classifier") text = "Wir müssen sicherstellen, dass keine Fehler passieren. Sicherheit hat höchste Priorität." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits).item() print("Predicted class:", "prevention" if predicted_class == 0 else "promotion") ``` ## Labels | Class | Description | |-------------|----------------------------------------| | `0` | Prevention-focused language | | `1` | Promotion-focused language | ## Training Details - **Training data**: Custom labeled corpus based on psychological framing - **Loss function**: Cross-entropy - **Optimizer**: AdamW - **Epochs**: 4 - **Learning rate**: 3e-5 ## Limitations - Trained on German-language data only - Performance may vary on out-of-domain text (e.g., technical manuals, poetry) - May not generalize across all cultural framings of regulatory focus ## License [MIT](LICENSE) ## Citation If you use this model in your research, please cite: ```bibtex @article{velutharambath2023prevention, title={Prevention or Promotion? Predicting Author's Regulatory Focus}, author={Velutharambath, Aswathy and Sassenberg, Kai and Klinger, Roman}, journal={Northern European Journal of Language Technology}, volume={9}, number={1}, year={2023} } ```