ayushirathour commited on
Commit
a4cafce
Β·
verified Β·
1 Parent(s): bfd3d89

Upload huggingface_readme.md

Browse files
Files changed (1) hide show
  1. huggingface_readme.md +242 -0
huggingface_readme.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - medical
5
+ - chest-xray
6
+ - pneumonia-detection
7
+ - healthcare
8
+ - computer-vision
9
+ - keras
10
+ - tensorflow
11
+ datasets:
12
+ - nih-chest-xray
13
+ metrics:
14
+ - accuracy
15
+ - sensitivity
16
+ - specificity
17
+ language:
18
+ - en
19
+ model-index:
20
+ - name: chest-xray-pneumonia-detection
21
+ results:
22
+ - task:
23
+ type: image-classification
24
+ name: Pneumonia Detection
25
+ dataset:
26
+ type: medical-imaging
27
+ name: External Validation Dataset
28
+ metrics:
29
+ - type: accuracy
30
+ value: 0.86
31
+ name: External Validation Accuracy
32
+ - type: sensitivity
33
+ value: 0.964
34
+ name: Sensitivity
35
+ - type: specificity
36
+ value: 0.748
37
+ name: Specificity
38
+ ---
39
+
40
+ # Chest X-Ray Pneumonia Detection Model
41
+
42
+ A robust deep learning system for automated pneumonia detection in chest radiographs, featuring comprehensive external validation and clinical-grade performance metrics.
43
+
44
+ ## 🎯 Model Overview
45
+
46
+ This model implements a binary classification system designed to identify pneumonia in chest X-ray images. Built on MobileNetV2 architecture with transfer learning, the system has undergone rigorous external validation on 485 independent samples, demonstrating strong clinical applicability and generalization capabilities.
47
+
48
+ ### Key Performance Highlights
49
+
50
+ - **External Validation Accuracy**: 86.0% on 485 independent samples
51
+ - **Clinical Sensitivity**: 96.4% - optimal for screening applications
52
+ - **Robust Generalization**: Validated on completely unseen data from independent sources
53
+ - **Production Ready**: Comprehensive evaluation with detailed performance analysis
54
+
55
+ ## πŸ“Š Performance Metrics
56
+
57
+ ### Validation Results Comparison
58
+
59
+ | Performance Metric | Internal Validation | External Validation | Clinical Assessment |
60
+ |-------------------|-------------------|-------------------|-------------------|
61
+ | **Accuracy** | 94.8% | 86.0% | Excellent generalization (8.8% variance) |
62
+ | **Sensitivity (Recall)** | 89.6% | 96.4% | Outstanding screening capability |
63
+ | **Specificity** | 100.0% | 74.8% | Acceptable false positive management |
64
+ | **Precision (PPV)** | 100.0% | 80.4% | Strong positive predictive value |
65
+ | **F1-Score** | 94.5% | 87.7% | Well-balanced performance profile |
66
+
67
+ ### External Validation Dataset
68
+ - **Sample Size**: 485 radiographs (234 normal, 251 pneumonia cases)
69
+ - **Data Source**: Independent pneumonia radiography dataset
70
+ - **Validation Method**: Complete external testing on previously unseen data
71
+ - **Statistical Significance**: Large sample size ensures reliable performance estimates
72
+
73
+ ## πŸ”¬ Clinical Significance
74
+
75
+ ### Screening Applications
76
+ The model's **96.4% sensitivity** makes it particularly suitable for pneumonia screening workflows, where missing positive cases carries high clinical risk. The balanced performance profile supports its use as a clinical decision support tool.
77
+
78
+ ### Generalization Capability
79
+ With only an 8.8% accuracy decrease from internal to external validation, the model demonstrates robust learning patterns that generalize well across different data sources and imaging protocols.
80
+
81
+ ## πŸš€ Implementation Guide
82
+
83
+ ### Quick Start Example
84
+
85
+ ```python
86
+ import tensorflow as tf
87
+ from tensorflow.keras.preprocessing import image
88
+ import numpy as np
89
+
90
+ # Load the pre-trained model from Hugging Face Hub
91
+ from huggingface_hub import hf_hub_download
92
+
93
+ # Download model from Hugging Face Hub
94
+ model_path = hf_hub_download(
95
+ repo_id="ayushirathour/chest-xray-pneumonia-detection",
96
+ filename="best_chest_xray_model.h5"
97
+ )
98
+ model = tf.keras.models.load_model(model_path)
99
+
100
+ def predict_pneumonia(img_path):
101
+ """
102
+ Predict pneumonia from chest X-ray image
103
+
104
+ Args:
105
+ img_path (str): Path to chest X-ray image
106
+
107
+ Returns:
108
+ dict: Prediction results with confidence scores
109
+ """
110
+ # Load and preprocess image
111
+ img = image.load_img(img_path, target_size=(224, 224))
112
+ img_array = image.img_to_array(img) / 255.0
113
+ img_array = np.expand_dims(img_array, axis=0)
114
+
115
+ # Generate prediction
116
+ prediction = model.predict(img_array)[0][0]
117
+
118
+ # Interpret results
119
+ if prediction > 0.5:
120
+ result = {
121
+ 'diagnosis': 'PNEUMONIA',
122
+ 'confidence': f"{prediction:.1%}",
123
+ 'recommendation': 'Clinical review recommended'
124
+ }
125
+ else:
126
+ result = {
127
+ 'diagnosis': 'NORMAL',
128
+ 'confidence': f"{1-prediction:.1%}",
129
+ 'recommendation': 'No pneumonia indicators detected'
130
+ }
131
+
132
+ return result
133
+
134
+ # Example usage
135
+ results = predict_pneumonia("chest_xray_sample.jpg")
136
+ print(f"Diagnosis: {results['diagnosis']}")
137
+ print(f"Confidence: {results['confidence']}")
138
+ print(f"Recommendation: {results['recommendation']}")
139
+ ```
140
+
141
+ ### Model Architecture Details
142
+
143
+ - **Base Architecture**: MobileNetV2 with transfer learning optimization
144
+ - **Input Specifications**: 224Γ—224 pixel RGB chest X-ray images
145
+ - **Output Format**: Binary classification probabilities (Normal/Pneumonia)
146
+ - **Framework**: TensorFlow 2.x / Keras
147
+ - **Model Size**: Optimized for clinical deployment scenarios
148
+
149
+ ## πŸ“ˆ Performance Visualizations
150
+
151
+ ### External Validation Results
152
+
153
+ ![Enhanced Confusion Matrix](1_enhanced_confusion_matrix.png)
154
+ *Detailed classification results with percentage breakdown*
155
+
156
+ ![Performance Comparison](4_performance_comparison.png)
157
+ *Internal vs External validation performance comparison*
158
+
159
+ ![Precision-Recall Analysis](3_precision_recall_curve.png)
160
+ *Clinical balance optimization for screening applications*
161
+
162
+ ![Class Distribution](5_class_distribution.png)
163
+ *Balanced external validation dataset distribution*
164
+
165
+ ## πŸ“‹ Clinical Applications
166
+
167
+ ### Primary Use Cases
168
+ 1. **Pneumonia Screening Programs**: High-sensitivity detection for population screening
169
+ 2. **Clinical Decision Support**: Augmenting radiologist workflow with AI insights
170
+ 3. **Triage Optimization**: Prioritizing cases requiring urgent clinical attention
171
+ 4. **Medical Education**: Demonstrating AI validation methodologies in healthcare
172
+
173
+ ### Implementation Considerations
174
+ - **Screening Focus**: Optimized for high sensitivity to minimize missed diagnoses
175
+ - **Clinical Oversight**: Designed to support, not replace, professional medical judgment
176
+ - **Quality Assurance**: Comprehensive validation ensures reliable performance metrics
177
+
178
+ ## ⚠️ Usage Guidelines & Limitations
179
+
180
+ ### Clinical Limitations
181
+ - **Diagnostic Support Only**: Not intended as a standalone diagnostic tool
182
+ - **Professional Supervision Required**: All results require clinical interpretation
183
+ - **False Positive Management**: 25.2% false positive rate necessitates clinical review
184
+ - **Population Considerations**: Performance may vary across different demographic groups
185
+
186
+ ### Technical Considerations
187
+ - **Dataset Scope**: Trained on specific chest X-ray imaging protocols
188
+ - **Input Requirements**: Optimal performance requires standard posteroanterior chest radiographs
189
+ - **Quality Dependencies**: Image quality significantly impacts prediction accuracy
190
+
191
+ ## πŸ“Š Dataset & Training Information
192
+
193
+ ### Training Dataset
194
+ - **Primary Source**: NIH Chest X-ray Dataset (carefully balanced subset)
195
+ - **Preprocessing Pipeline**: Standardized resizing, normalization, and augmentation
196
+ - **Quality Control**: Systematic filtering for optimal training data quality
197
+
198
+ ### External Validation Protocol
199
+ - **Independent Dataset**: 485 samples from completely separate data source
200
+ - **Balanced Composition**: 234 normal cases, 251 pneumonia cases
201
+ - **Validation Rigor**: Zero data leakage between training and validation sets
202
+
203
+ ## πŸ“ Repository Contents
204
+
205
+ | File | Description |
206
+ |------|-------------|
207
+ | `best_chest_xray_model.h5` | Production-ready trained Keras model |
208
+ | `comprehensive_external_validation_results.csv` | Detailed performance metrics and analysis |
209
+ | `classification_report.csv` | Complete sklearn classification report |
210
+ | `*.png` | Professional visualization suite (8 comprehensive charts) |
211
+
212
+ ## πŸ“š Citation & Attribution
213
+
214
+ If this model contributes to your research or clinical work, please cite:
215
+
216
+ ```bibtex
217
+ @misc{rathour2025chestxray,
218
+ title={Chest X-Ray Pneumonia Detection: Externally Validated Deep Learning System},
219
+ author={Rathour, Ayushi},
220
+ year={2025},
221
+ note={External validation study on 485 independent samples with clinical performance analysis},
222
+ url={https://huggingface.co/ayushirathour/chest-xray-pneumonia-detection}
223
+ }
224
+ ```
225
+
226
+ ## πŸ‘©β€πŸ’» Author & Contact
227
+
228
+ **Ayushi Rathour** - Medical AI Research & Development
229
+
230
+ - πŸ”— **GitHub**: [@ayushirathour](https://github.com/ayushirathour)
231
+ - πŸ’Ό **LinkedIn**: [Ayushi Rathour](https://linkedin.com/in/ayushi-rathour)
232
+ - πŸ“§ **Email**: [email protected]
233
+
234
+ ---
235
+
236
+ ## πŸ₯ Advancing Medical AI Through Rigorous Validation
237
+
238
+ *This model exemplifies the critical importance of external validation in medical artificial intelligence, achieving clinical-grade performance through systematic methodology, comprehensive evaluation, and transparent reporting of both capabilities and limitations.*
239
+
240
+ ---
241
+
242
+ **License**: MIT | **Tags**: medical, chest-xray, pneumonia-detection, healthcare, computer-vision, keras