Upload example_usage.py with huggingface_hub
Browse files- example_usage.py +98 -0
example_usage.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Simple example script for using the Highway Vehicle Detection model.
|
| 4 |
+
This script demonstrates basic usage of the trained YOLOv8 model.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from ultralytics import YOLO
|
| 8 |
+
import cv2
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
def detect_vehicles(image_path, model_path="models/yolov8m_stage2_improved_best.pt"):
|
| 12 |
+
"""
|
| 13 |
+
Detect vehicles in an image using the trained model.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
image_path (str): Path to the input image
|
| 17 |
+
model_path (str): Path to the trained model
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
results: YOLO detection results
|
| 21 |
+
"""
|
| 22 |
+
# Load the trained model
|
| 23 |
+
model = YOLO(model_path)
|
| 24 |
+
|
| 25 |
+
# Run inference
|
| 26 |
+
results = model(image_path)
|
| 27 |
+
|
| 28 |
+
# Print detection results
|
| 29 |
+
for result in results:
|
| 30 |
+
boxes = result.boxes
|
| 31 |
+
if boxes is not None:
|
| 32 |
+
print(f"\nDetected {len(boxes)} vehicles:")
|
| 33 |
+
for i, box in enumerate(boxes):
|
| 34 |
+
x1, y1, x2, y2 = box.xyxy[0]
|
| 35 |
+
conf = box.conf[0]
|
| 36 |
+
cls = int(box.cls[0])
|
| 37 |
+
class_name = model.names[cls]
|
| 38 |
+
print(f" {i+1}. {class_name} (confidence: {conf:.2f})")
|
| 39 |
+
else:
|
| 40 |
+
print("No vehicles detected.")
|
| 41 |
+
|
| 42 |
+
return results
|
| 43 |
+
|
| 44 |
+
def process_video(video_path, output_path=None, model_path="models/yolov8m_stage2_improved_best.pt"):
|
| 45 |
+
"""
|
| 46 |
+
Process a video file and save results.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
video_path (str): Path to the input video
|
| 50 |
+
output_path (str): Path to save the output video (optional)
|
| 51 |
+
model_path (str): Path to the trained model
|
| 52 |
+
"""
|
| 53 |
+
# Load the trained model
|
| 54 |
+
model = YOLO(model_path)
|
| 55 |
+
|
| 56 |
+
# Process video
|
| 57 |
+
if output_path:
|
| 58 |
+
results = model(video_path, save=True, project="output", name="detection")
|
| 59 |
+
print(f"Results saved to: output/detection/")
|
| 60 |
+
else:
|
| 61 |
+
results = model(video_path)
|
| 62 |
+
|
| 63 |
+
return results
|
| 64 |
+
|
| 65 |
+
def main():
|
| 66 |
+
"""Main function with example usage."""
|
| 67 |
+
print("Highway Vehicle Detection - Example Usage")
|
| 68 |
+
print("=" * 50)
|
| 69 |
+
|
| 70 |
+
# Check if model exists
|
| 71 |
+
model_path = "models/yolov8m_stage2_improved_best.pt"
|
| 72 |
+
if not os.path.exists(model_path):
|
| 73 |
+
print(f"Error: Model file not found at {model_path}")
|
| 74 |
+
print("Please make sure you've downloaded the model files.")
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
# Example 1: Process an image
|
| 78 |
+
print("\n1. Image Detection Example:")
|
| 79 |
+
print(" To detect vehicles in an image:")
|
| 80 |
+
print(" results = detect_vehicles('path/to/image.jpg')")
|
| 81 |
+
|
| 82 |
+
# Example 2: Process a video
|
| 83 |
+
print("\n2. Video Processing Example:")
|
| 84 |
+
print(" To process a video:")
|
| 85 |
+
print(" results = process_video('path/to/video.mp4', 'output.mp4')")
|
| 86 |
+
|
| 87 |
+
# Example 3: Direct model usage
|
| 88 |
+
print("\n3. Direct Model Usage:")
|
| 89 |
+
print(" from ultralytics import YOLO")
|
| 90 |
+
print(" model = YOLO('models/yolov8m_stage2_improved_best.pt')")
|
| 91 |
+
print(" results = model('path/to/image.jpg')")
|
| 92 |
+
print(" results[0].show()")
|
| 93 |
+
|
| 94 |
+
print("\n" + "=" * 50)
|
| 95 |
+
print("For more advanced features, use main.py")
|
| 96 |
+
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
main()
|