Text Classification
Transformers
Safetensors
English
bert
multi-text-classification
classification
intent-classification
intent-detection
nlp
natural-language-processing
edge-ai
iot
smart-home
location-intelligence
voice-assistant
conversational-ai
real-time
boltuix
neurobert
local-search
business-category-classification
fast-inference
lightweight-model
on-device-nlp
offline-nlp
mobile-ai
multilingual-nlp
intent-routing
category-detection
query-understanding
artificial-intelligence
assistant-ai
smart-cities
customer-support
productivity-tools
contextual-ai
semantic-search
user-intent
microservices
smart-query-routing
industry-application
aiops
domain-specific-nlp
location-aware-ai
intelligent-routing
edge-nlp
smart-query-classifier
zero-shot-classification
smart-search
location-awareness
contextual-intelligence
geolocation
query-classification
multilingual-intent
chatbot-nlp
enterprise-ai
sdk-integration
api-ready
developer-tools
real-world-ai
geo-intelligence
embedded-ai
smart-routing
voice-interface
smart-devices
contextual-routing
fast-nlp
data-driven-ai
inference-optimization
digital-assistants
neural-nlp
ai-automation
lightweight-transformers
Update README.md
Browse files
README.md
CHANGED
|
@@ -350,222 +350,9 @@ print("✅ Supported Categories:", supported_labels)
|
|
| 350 |
```
|
| 351 |
---
|
| 352 |
|
| 353 |
-
|
| 354 |
### Training Code
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments, TrainerCallback
|
| 358 |
-
from sklearn.model_selection import train_test_split
|
| 359 |
-
from sklearn.metrics import accuracy_score, f1_score
|
| 360 |
-
import torch
|
| 361 |
-
from torch.utils.data import Dataset
|
| 362 |
-
import shutil
|
| 363 |
-
from tqdm import tqdm
|
| 364 |
-
import numpy as np
|
| 365 |
-
|
| 366 |
-
# === 0. Define model and output paths ===
|
| 367 |
-
MODEL_NAME = "boltuix/NeuroBERT"
|
| 368 |
-
OUTPUT_DIR = "./neuro-nearby"
|
| 369 |
-
|
| 370 |
-
# === 1. Custom callback for tqdm progress bar ===
|
| 371 |
-
class TQDMProgressBarCallback(TrainerCallback):
|
| 372 |
-
def __init__(self):
|
| 373 |
-
super().__init__()
|
| 374 |
-
self.progress_bar = None
|
| 375 |
-
|
| 376 |
-
def on_train_begin(self, args, state, control, **kwargs):
|
| 377 |
-
self.total_steps = state.max_steps
|
| 378 |
-
self.progress_bar = tqdm(total=self.total_steps, desc="Training", unit="step")
|
| 379 |
-
|
| 380 |
-
def on_step_end(self, args, state, control, **kwargs):
|
| 381 |
-
self.progress_bar.update(1)
|
| 382 |
-
self.progress_bar.set_postfix({
|
| 383 |
-
"epoch": f"{state.epoch:.2f}",
|
| 384 |
-
"step": state.global_step
|
| 385 |
-
})
|
| 386 |
-
|
| 387 |
-
def on_train_end(self, args, state, control, **kwargs):
|
| 388 |
-
if self.progress_bar is not None:
|
| 389 |
-
self.progress_bar.close()
|
| 390 |
-
self.progress_bar = None
|
| 391 |
-
|
| 392 |
-
# === 2. Load and preprocess data ===
|
| 393 |
-
dataset_path = 'dataset.csv'
|
| 394 |
-
df = pd.read_csv(dataset_path)
|
| 395 |
-
df = df.dropna(subset=['category'])
|
| 396 |
-
df.columns = ['label', 'text'] # Rename columns
|
| 397 |
-
|
| 398 |
-
# === 3. Encode labels ===
|
| 399 |
-
labels = sorted(df["label"].unique())
|
| 400 |
-
label_to_id = {label: idx for idx, label in enumerate(labels)}
|
| 401 |
-
id_to_label = {idx: label for label, idx in label_to_id.items()}
|
| 402 |
-
df['label'] = df['label'].map(label_to_id)
|
| 403 |
-
|
| 404 |
-
# === 4. Train-val split ===
|
| 405 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
| 406 |
-
df['text'].tolist(), df['label'].tolist(), test_size=0.2, random_state=42, stratify=df['label']
|
| 407 |
-
)
|
| 408 |
-
|
| 409 |
-
# === 5. Tokenizer ===
|
| 410 |
-
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME)
|
| 411 |
-
|
| 412 |
-
# === 6. Dataset class ===
|
| 413 |
-
class CategoryDataset(Dataset):
|
| 414 |
-
def __init__(self, texts, labels, tokenizer, max_length=128):
|
| 415 |
-
self.texts = texts
|
| 416 |
-
self.labels = labels
|
| 417 |
-
self.tokenizer = tokenizer
|
| 418 |
-
self.max_length = max_length
|
| 419 |
-
|
| 420 |
-
def __len__(self):
|
| 421 |
-
return len(self.texts)
|
| 422 |
-
|
| 423 |
-
def __getitem__(self, idx):
|
| 424 |
-
encoding = self.tokenizer(
|
| 425 |
-
self.texts[idx],
|
| 426 |
-
padding='max_length',
|
| 427 |
-
truncation=True,
|
| 428 |
-
max_length=self.max_length,
|
| 429 |
-
return_tensors='pt'
|
| 430 |
-
)
|
| 431 |
-
return {
|
| 432 |
-
'input_ids': encoding['input_ids'].squeeze(0),
|
| 433 |
-
'attention_mask': encoding['attention_mask'].squeeze(0),
|
| 434 |
-
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
|
| 435 |
-
}
|
| 436 |
-
|
| 437 |
-
# === 7. Load datasets ===
|
| 438 |
-
train_dataset = CategoryDataset(train_texts, train_labels, tokenizer)
|
| 439 |
-
val_dataset = CategoryDataset(val_texts, val_labels, tokenizer)
|
| 440 |
-
|
| 441 |
-
# === 8. Load model with num_labels ===
|
| 442 |
-
model = BertForSequenceClassification.from_pretrained(
|
| 443 |
-
MODEL_NAME,
|
| 444 |
-
num_labels=len(label_to_id)
|
| 445 |
-
)
|
| 446 |
-
|
| 447 |
-
# === 9. Define metrics for evaluation ===
|
| 448 |
-
def compute_metrics(eval_pred):
|
| 449 |
-
logits, labels = eval_pred
|
| 450 |
-
predictions = np.argmax(logits, axis=-1)
|
| 451 |
-
acc = accuracy_score(labels, predictions)
|
| 452 |
-
f1 = f1_score(labels, predictions, average='weighted')
|
| 453 |
-
return {
|
| 454 |
-
'accuracy': acc,
|
| 455 |
-
'f1_weighted': f1,
|
| 456 |
-
}
|
| 457 |
-
|
| 458 |
-
# === 10. Training arguments ===
|
| 459 |
-
training_args = TrainingArguments(
|
| 460 |
-
output_dir='./results',
|
| 461 |
-
run_name="NeuroNearby",
|
| 462 |
-
num_train_epochs=5,
|
| 463 |
-
per_device_train_batch_size=16,
|
| 464 |
-
per_device_eval_batch_size=16,
|
| 465 |
-
warmup_steps=500,
|
| 466 |
-
weight_decay=0.01,
|
| 467 |
-
logging_dir='./logs',
|
| 468 |
-
logging_steps=10,
|
| 469 |
-
eval_strategy="epoch", # Corrected from evaluation_strategy
|
| 470 |
-
report_to="none"
|
| 471 |
-
)
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
# === 11. Trainer setup ===
|
| 475 |
-
trainer = Trainer(
|
| 476 |
-
model=model,
|
| 477 |
-
args=training_args,
|
| 478 |
-
train_dataset=train_dataset,
|
| 479 |
-
eval_dataset=val_dataset,
|
| 480 |
-
compute_metrics=compute_metrics,
|
| 481 |
-
callbacks=[TQDMProgressBarCallback()]
|
| 482 |
-
)
|
| 483 |
-
|
| 484 |
-
# === 12. Train and evaluate ===
|
| 485 |
-
trainer.train()
|
| 486 |
-
trainer.evaluate()
|
| 487 |
-
|
| 488 |
-
# === 13. Save model and tokenizer ===
|
| 489 |
-
model.config.label2id = label_to_id
|
| 490 |
-
model.config.id2label = id_to_label
|
| 491 |
-
model.config.num_labels = len(label_to_id)
|
| 492 |
-
|
| 493 |
-
model.save_pretrained(OUTPUT_DIR)
|
| 494 |
-
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 495 |
-
|
| 496 |
-
# === 14. Zip model directory ===
|
| 497 |
-
shutil.make_archive("neuro-nearby", 'zip', OUTPUT_DIR)
|
| 498 |
-
print("✅ Training complete. Model and tokenizer saved to ./neuro-nearby")
|
| 499 |
-
print("✅ Model directory zipped to neuro-nearby.zip")
|
| 500 |
-
|
| 501 |
-
# === 15. Test function with confidence threshold ===
|
| 502 |
-
def run_test_cases(model, tokenizer, test_sentences, label_to_id, id_to_label, confidence_threshold=0.5):
|
| 503 |
-
model.eval()
|
| 504 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 505 |
-
model.to(device)
|
| 506 |
-
|
| 507 |
-
correct = 0
|
| 508 |
-
total = len(test_sentences)
|
| 509 |
-
results = []
|
| 510 |
-
|
| 511 |
-
for text, expected_label in test_sentences:
|
| 512 |
-
encoding = tokenizer(
|
| 513 |
-
text,
|
| 514 |
-
padding='max_length',
|
| 515 |
-
truncation=True,
|
| 516 |
-
max_length=128,
|
| 517 |
-
return_tensors='pt'
|
| 518 |
-
)
|
| 519 |
-
input_ids = encoding['input_ids'].to(device)
|
| 520 |
-
attention_mask = encoding['attention_mask'].to(device)
|
| 521 |
-
|
| 522 |
-
with torch.no_grad():
|
| 523 |
-
outputs = model(input_ids, attention_mask=attention_mask)
|
| 524 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 525 |
-
max_prob, predicted_id = torch.max(probs, dim=1)
|
| 526 |
-
predicted_label = id_to_label[predicted_id.item()]
|
| 527 |
-
# Apply confidence threshold
|
| 528 |
-
if max_prob.item() < confidence_threshold:
|
| 529 |
-
predicted_label = "unknown"
|
| 530 |
-
|
| 531 |
-
is_correct = (predicted_label == expected_label)
|
| 532 |
-
if is_correct:
|
| 533 |
-
correct += 1
|
| 534 |
-
results.append({
|
| 535 |
-
"sentence": text,
|
| 536 |
-
"expected": expected_label,
|
| 537 |
-
"predicted": predicted_label,
|
| 538 |
-
"confidence": max_prob.item(),
|
| 539 |
-
"correct": is_correct
|
| 540 |
-
})
|
| 541 |
-
|
| 542 |
-
accuracy = correct / total * 100
|
| 543 |
-
print(f"\nTest Cases Accuracy: {accuracy:.2f}% ({correct}/{total} correct)")
|
| 544 |
-
|
| 545 |
-
for r in results:
|
| 546 |
-
status = "✓" if r["correct"] else "✗"
|
| 547 |
-
print(f"{status} '{r['sentence']}'")
|
| 548 |
-
print(f" Expected: {r['expected']}, Predicted: {r['predicted']}, Confidence: {r['confidence']:.3f}")
|
| 549 |
-
|
| 550 |
-
assert accuracy >= 70, f"Test failed: Accuracy {accuracy:.2f}% < 70%"
|
| 551 |
-
return results
|
| 552 |
-
|
| 553 |
-
# === 16. Sample test sentences for testing ===
|
| 554 |
-
test_sentences = [
|
| 555 |
-
("Where is the nearest airport to this location?", "airport"),
|
| 556 |
-
("Can I bring a laptop through airport security?", "airport"),
|
| 557 |
-
("How do I get to the closest airport terminal?", "airport"),
|
| 558 |
-
("Need help finding an accounting firm for tax planning.", "accounting firm"),
|
| 559 |
-
("Can an accounting firm help with financial audits?", "accounting firm"),
|
| 560 |
-
("Looking for an accounting firm to manage payroll.", "accounting firm"),
|
| 561 |
-
# Add more diverse sentences covering your 155 categories
|
| 562 |
-
]
|
| 563 |
-
|
| 564 |
-
print("\nRunning test cases...")
|
| 565 |
-
test_results = run_test_cases(model, tokenizer, test_sentences, label_to_id, id_to_label)
|
| 566 |
-
print("✅ Test cases completed.")
|
| 567 |
-
```
|
| 568 |
-
|
| 569 |
---
|
| 570 |
|
| 571 |
## Evaluation 📈
|
|
|
|
| 350 |
```
|
| 351 |
---
|
| 352 |
|
|
|
|
| 353 |
### Training Code
|
| 354 |
+
- 📍 Get training [Source Code](https://huggingface.co/boltuix/NeuroLocale/blob/main/colab_training_code.ipynb) 🌟
|
| 355 |
+
- 📍 Dataset (comming soon..)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
---
|
| 357 |
|
| 358 |
## Evaluation 📈
|