Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: ru
|
| 3 |
+
datasets:
|
| 4 |
+
- SberDevices/Golos
|
| 5 |
+
- mozilla-foundation/common_voice_6_0
|
| 6 |
+
metrics:
|
| 7 |
+
- wer
|
| 8 |
+
- cer
|
| 9 |
+
tags:
|
| 10 |
+
- audio
|
| 11 |
+
- automatic-speech-recognition
|
| 12 |
+
- speech
|
| 13 |
+
- mozilla-foundation/common_voice_6_0
|
| 14 |
+
- SberDevices/Golos
|
| 15 |
+
license: apache-2.0
|
| 16 |
+
model-index:
|
| 17 |
+
- name: XLSR Wav2Vec2 Russian with Language Model by Ivan Bondarenko
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
name: Speech Recognition
|
| 21 |
+
type: automatic-speech-recognition
|
| 22 |
+
dataset:
|
| 23 |
+
name: Sberdevices Golos (crowd)
|
| 24 |
+
type: SberDevices/Golos
|
| 25 |
+
args: ru
|
| 26 |
+
metrics:
|
| 27 |
+
- name: Test WER
|
| 28 |
+
type: wer
|
| 29 |
+
value: 7.42
|
| 30 |
+
- name: Test CER
|
| 31 |
+
type: cer
|
| 32 |
+
value: 1.85
|
| 33 |
+
- task:
|
| 34 |
+
name: Speech Recognition
|
| 35 |
+
type: automatic-speech-recognition
|
| 36 |
+
dataset:
|
| 37 |
+
name: Sberdevices Golos (farfield)
|
| 38 |
+
type: SberDevices/Golos
|
| 39 |
+
args: ru
|
| 40 |
+
metrics:
|
| 41 |
+
- name: Test WER
|
| 42 |
+
type: wer
|
| 43 |
+
value: 16.08
|
| 44 |
+
- name: Test CER
|
| 45 |
+
type: cer
|
| 46 |
+
value: 5.27
|
| 47 |
+
- task:
|
| 48 |
+
name: Automatic Speech Recognition
|
| 49 |
+
type: automatic-speech-recognition
|
| 50 |
+
dataset:
|
| 51 |
+
name: Common Voice ru
|
| 52 |
+
type: common_voice
|
| 53 |
+
args: ru
|
| 54 |
+
metrics:
|
| 55 |
+
- name: Test WER
|
| 56 |
+
type: wer
|
| 57 |
+
value: 29.75
|
| 58 |
+
- name: Test CER
|
| 59 |
+
type: cer
|
| 60 |
+
value: 8.15
|
| 61 |
+
---
|
| 62 |
+
# Wav2Vec2-Large-Ru-Golos-With-LM
|
| 63 |
+
|
| 64 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Russian using the [Sberdevices Golos](https://huggingface.co/datasets/SberDevices/Golos). The language model is based on [the Russian National Corpus](https://ruscorpora.ru/en), and this model includes unigrams, bigrams and trigrams.
|
| 65 |
+
|
| 66 |
+
## Usage
|
| 67 |
+
|
| 68 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 69 |
+
|
| 70 |
+
You can use this model by writing your own inference script:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
import os
|
| 74 |
+
|
| 75 |
+
import librosa
|
| 76 |
+
import nltk
|
| 77 |
+
import numpy as np
|
| 78 |
+
|
| 79 |
+
import torch
|
| 80 |
+
from datasets import load_dataset
|
| 81 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM
|
| 82 |
+
|
| 83 |
+
LANG_ID = "ru"
|
| 84 |
+
MODEL_ID = "bond005/wav2vec2-large-ru-golos-with-lm"
|
| 85 |
+
SAMPLES = 20
|
| 86 |
+
|
| 87 |
+
nltk.download('punkt')
|
| 88 |
+
num_processes = max(1, os.cpu_count())
|
| 89 |
+
|
| 90 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
| 91 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
|
| 92 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 93 |
+
|
| 94 |
+
# Preprocessing the datasets.
|
| 95 |
+
# We need to read the audio files as arrays
|
| 96 |
+
def speech_file_to_array_fn(batch):
|
| 97 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16000)
|
| 98 |
+
prepared_sentence = ' '.join(list(filter(
|
| 99 |
+
lambda it: it.isalpha(),
|
| 100 |
+
nltk.wordpunct_tokenize(batch["sentence"].lower().replace('ё', 'е'))
|
| 101 |
+
)))
|
| 102 |
+
batch["speech"] = np.asarray(speech_array, dtype=np.float32)
|
| 103 |
+
batch["sentence"] = prepared_sentence
|
| 104 |
+
return batch
|
| 105 |
+
|
| 106 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 107 |
+
|
| 108 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 111 |
+
predicted_sentences = processor.batch_decode(
|
| 112 |
+
logits=logits.numpy(),
|
| 113 |
+
num_processes=num_processes
|
| 114 |
+
).text
|
| 115 |
+
|
| 116 |
+
for i, predicted_sentence in enumerate(predicted_sentences):
|
| 117 |
+
print("-" * 100)
|
| 118 |
+
print("Reference:", test_dataset[i]["sentence"])
|
| 119 |
+
print("Prediction:", predicted_sentence)
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
```text
|
| 123 |
+
----------------------------------------------------------------------------------------------------
|
| 124 |
+
Reference: я беру маленький кусочек бумажки
|
| 125 |
+
Prediction: либерман чик сочи бумажки
|
| 126 |
+
----------------------------------------------------------------------------------------------------
|
| 127 |
+
Reference: о потерях пока не сообщается
|
| 128 |
+
Prediction: о потерях пока не сообщается оооо
|
| 129 |
+
----------------------------------------------------------------------------------------------------
|
| 130 |
+
Reference: ваша воля
|
| 131 |
+
Prediction: ваша воля
|
| 132 |
+
----------------------------------------------------------------------------------------------------
|
| 133 |
+
Reference: мы высоко ценим ее роль в этом отношении
|
| 134 |
+
Prediction: урс ока цене не роль в этом отношении
|
| 135 |
+
----------------------------------------------------------------------------------------------------
|
| 136 |
+
Reference: вот это вызывало у нас жуткое отторжение
|
| 137 |
+
Prediction: от это вызвал у нас жутко отторжения
|
| 138 |
+
----------------------------------------------------------------------------------------------------
|
| 139 |
+
Reference: он положил ей букет на книгу
|
| 140 |
+
Prediction: он положил букет на книгу
|
| 141 |
+
----------------------------------------------------------------------------------------------------
|
| 142 |
+
Reference: ну и положу обиделась женя
|
| 143 |
+
Prediction: ну я положу обиделась женя
|
| 144 |
+
----------------------------------------------------------------------------------------------------
|
| 145 |
+
Reference: благодарю представителя австралии за ее заявление
|
| 146 |
+
Prediction: богатырю представитель австралии зае заявления
|
| 147 |
+
----------------------------------------------------------------------------------------------------
|
| 148 |
+
Reference: для меня это не было неожиданностью
|
| 149 |
+
Prediction: дай мне это не было неожиданностью
|
| 150 |
+
----------------------------------------------------------------------------------------------------
|
| 151 |
+
Reference: поздняя ночь
|
| 152 |
+
Prediction: поздняя ночь
|
| 153 |
+
----------------------------------------------------------------------------------------------------
|
| 154 |
+
Reference: тем не менее нужно вновь вычленить некоторые элементы наших политических установок
|
| 155 |
+
Prediction: тем не менее нужно мыслить снег корыэлементанажихпалиотических установок
|
| 156 |
+
----------------------------------------------------------------------------------------------------
|
| 157 |
+
Reference: мы не можем позволить себе упустить эту возможность
|
| 158 |
+
Prediction: мы не можем под болить чи опустить эту возможность
|
| 159 |
+
----------------------------------------------------------------------------------------------------
|
| 160 |
+
Reference: в предстоящие месяцы суд примет решение по ордеру на арест министра обороны хусейна
|
| 161 |
+
Prediction: в предстоящие месяцы суд примет решение по ордеру на арест министра обороны хусейна
|
| 162 |
+
----------------------------------------------------------------------------------------------------
|
| 163 |
+
Reference: валерия живет в старом панельном доме советских времен
|
| 164 |
+
Prediction: валерия живето в старом панель тона советских времян
|
| 165 |
+
----------------------------------------------------------------------------------------------------
|
| 166 |
+
Reference: я вернусь скоро
|
| 167 |
+
Prediction: я вернусь скоро
|
| 168 |
+
----------------------------------------------------------------------------------------------------
|
| 169 |
+
Reference: слово предоставляется его превосходительству принцу зайду
|
| 170 |
+
Prediction: слово предоставляется его превосходительство принцу зайду
|
| 171 |
+
----------------------------------------------------------------------------------------------------
|
| 172 |
+
Reference: ну конечно тебе бы этого хотелось
|
| 173 |
+
Prediction: ну конечно тебе этого хотелось
|
| 174 |
+
----------------------------------------------------------------------------------------------------
|
| 175 |
+
Reference: общественные объединения равны перед законом
|
| 176 |
+
Prediction: общественные объединения равны перед законом
|
| 177 |
+
----------------------------------------------------------------------------------------------------
|
| 178 |
+
Reference: ну что же нету этики эстетики
|
| 179 |
+
Prediction: ну что же не то натеки невротики
|
| 180 |
+
----------------------------------------------------------------------------------------------------
|
| 181 |
+
Reference: сразу же она легла в постель
|
| 182 |
+
Prediction: сразу же она легла в пасти
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
The Google Colab version of [this script](https://colab.research.google.com/drive/1SnQmrt6HmMNV-zK-UCPajuwl1JvoCqbX?usp=sharing) is available too.
|
| 187 |
+
|
| 188 |
+
## Evaluation
|
| 189 |
+
This model was evaluated on the test subsets of [SberDevices Golos](https://huggingface.co/datasets/SberDevices/Golos) and [Common Voice 6.0](https://huggingface.co/datasets/common_voice) (Russian part), but it was trained on the train subset of SberDevices Golos only.
|
| 190 |
+
|
| 191 |
+
## Citation
|
| 192 |
+
If you want to cite this model you can use this:
|
| 193 |
+
|
| 194 |
+
```bibtex
|
| 195 |
+
@misc{bondarenko2022wav2vec2-large-ru-golos,
|
| 196 |
+
title={XLSR Wav2Vec2 Russian with Language Model by Ivan Bondarenko},
|
| 197 |
+
author={Bondarenko, Ivan},
|
| 198 |
+
publisher={Hugging Face},
|
| 199 |
+
journal={Hugging Face Hub},
|
| 200 |
+
howpublished={\url{https://huggingface.co/bond005/wav2vec2-large-ru-golos-with-lm}},
|
| 201 |
+
year={2022}
|
| 202 |
+
}
|
| 203 |
+
```
|