Update README.md
Browse files
README.md
CHANGED
|
@@ -39,19 +39,29 @@ login("Huggingface access token")
|
|
| 39 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 40 |
peft_model_name="bpavlsh/Mistral-crypto-news"
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
| 44 |
device_map="auto", torch_dtype="auto")
|
| 45 |
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
You are an expert in analyzing news for fake content, propaganda, and offensive language.
|
| 51 |
-
<</SYS>>
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
|
|
|
|
|
|
|
| 55 |
|
| 56 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 57 |
output = model.generate(**inputs, max_new_tokens=1500)
|
|
|
|
| 39 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 40 |
peft_model_name="bpavlsh/Mistral-crypto-news"
|
| 41 |
|
| 42 |
+
#Choose prompt query
|
| 43 |
+
prompt_query_1="Generate a knowledge graph from cryptocurrency news:"
|
| 44 |
+
prompt_query_2="Generate summaries of cryptocurrency news and detect sentiment signals:"
|
| 45 |
+
prompt_query_3="Create a JSON representation of the summary of cryptocurrency news:"
|
| 46 |
+
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 48 |
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
| 49 |
device_map="auto", torch_dtype="auto")
|
| 50 |
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
| 51 |
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 53 |
+
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
| 54 |
+
device_map="auto", torch_dtype="auto")
|
| 55 |
+
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
| 56 |
|
| 57 |
+
text=""" News text for analysis, from 1Kb to 10Kb """
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
prompt = f"""<s>[INST] <<SYS>>
|
| 60 |
+
You are an expert in analyzing cryptocurrency news.
|
| 61 |
+
<</SYS>>
|
| 62 |
|
| 63 |
+
{prompt_query_1}
|
| 64 |
+
{text} [/INST]"""
|
| 65 |
|
| 66 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 67 |
output = model.generate(**inputs, max_new_tokens=1500)
|