--- language: - en - zh tags: - fp8 - quantization - dynamic - vision-language - multimodal - vllm - llm-compressor - internvl3.5 base_model: OpenGVLab/InternVL3_5-2B base_model_relation: quantized pipeline_tag: image-text-to-text inference: false license: mit --- # 🔥 InternVL3_5-2B-FP8-Dynamic 🔥 This is a **fp8 dynamic (w8a8)** version of [OpenGVLab/InternVL3_5-2B](https://huggingface.co/OpenGVLab/InternVL3_5-2B), optimized for high-performance inference with vLLM. The model utilizes **fp8 dynamic (w8a8)** for optimal performance and deployment. ## Just Run It (vLLM serve) You can serve the model using vLLM's OpenAI-compatible API server. ```bash vllm serve brandonbeiler/InternVL3_5-2B-FP8-Dynamic \ --quantization compressed-tensors \ --served-model-name internvl3_5-2b \ --reasoning-parser qwen3 \ --trust-remote-code \ --max-model-len 32768 \ --tensor-parallel-size 1 # Adjust based on your GPU setup ``` **Notes** - 32k max context length - reasoning parser ready to go, requires system prompt to run in thinking mode - still investigating tool calling ## 🚀 Key Features - **FP8 Dynamic Quantization**: No calibration required, ready to use immediately - **Vision-Language Optimized**: Specialized quantization recipe that preserves visual understanding - **vLLM Ready**: Seamless integration with vLLM for production deployment - **Memory Efficient**: ~50% memory reduction compared to FP16 original - **Performance Boost**: Significant faster inference on H100/L40S GPUs ## 📊 Model Details - **Original Model**: [OpenGVLab/InternVL3_5-2B](https://huggingface.co/OpenGVLab/InternVL3_5-2B) - **Source Model**: OpenGVLab/InternVL3_5-2B - **Quantized Model**: InternVL3_5-2B-FP8-Dynamic - **Quantization Method**: FP8 Dynamic (W8A8) - **Quantization Library**: [LLM Compressor](https://github.com/vllm-project/llm-compressor) v0.7.1 - **Quantized by**: [brandonbeiler](https://huggingface.co/brandonbeiler) ## 🏗️ Technical Specifications ### Hardware Requirements - **Inference**: ? VRAM (+ VRAM for context) - **Supported GPUs**: H100, L40S, A100 (80GB), RTX 4090 (2x for tensor parallelism) - **GPU Architecture**: Latest NVIDIA GPUs (Ada Lovelace, Hopper and later) and latest AMD GPUs. Recommended for NVIDIA GPUs with compute capability >=9.0 (Hopper and Blackwell) ### Quantization Details - **Weights**: FP8 E4M3 with dynamic per-tensor scales - **Activations**: FP8 E4M3 with dynamic per-tensor scales - **Preserved Components**: Vision tower, embeddings, mlp1 ## 🔬 Package Versions This model was created using: ``` llmcompressor==0.7.1 compressed-tensors==0.10.2 transformers==4.55.0 torch==2.7.1 vllm==0.10.1.1 ``` *Quantized with ❤️ using LLM Compressor for the open-source community*