Upload RecursiveGPT2Model.py with huggingface_hub
Browse files- RecursiveGPT2Model.py +353 -1
RecursiveGPT2Model.py
CHANGED
|
@@ -1,6 +1,358 @@
|
|
| 1 |
from transformers import GPT2LMHeadModel, GPT2Config
|
| 2 |
-
from shared_attention import convert_to_recursive
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class RecursiveGPT2Config(GPT2Config):
|
| 6 |
model_type = "recursive_gpt2"
|
|
|
|
| 1 |
from transformers import GPT2LMHeadModel, GPT2Config
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import copy
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import math
|
| 7 |
+
from typing import Optional, List
|
| 8 |
+
|
| 9 |
+
class MultiheadSelfAttention(nn.Module):
|
| 10 |
+
def __init__(self, d_model: int, n_heads: int):
|
| 11 |
+
super().__init__()
|
| 12 |
+
assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
|
| 13 |
+
self.d_model = d_model
|
| 14 |
+
self.n_heads = n_heads
|
| 15 |
+
self.d_head = d_model // n_heads
|
| 16 |
+
|
| 17 |
+
# Standard projections
|
| 18 |
+
self.q_proj = nn.Linear(d_model, d_model)
|
| 19 |
+
self.k_proj = nn.Linear(d_model, d_model)
|
| 20 |
+
self.v_proj = nn.Linear(d_model, d_model)
|
| 21 |
+
self.out_proj = nn.Linear(d_model, d_model)
|
| 22 |
+
|
| 23 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 24 |
+
B, T, C = x.shape
|
| 25 |
+
H = self.n_heads
|
| 26 |
+
D = self.d_head
|
| 27 |
+
|
| 28 |
+
q = self.q_proj(x).view(B, T, H, D).transpose(1, 2) # (B, H, T, D)
|
| 29 |
+
k = self.k_proj(x).view(B, T, H, D).transpose(1, 2)
|
| 30 |
+
v = self.v_proj(x).view(B, T, H, D).transpose(1, 2)
|
| 31 |
+
|
| 32 |
+
att = (q @ k.transpose(-2, -1)) / math.sqrt(D) # (B, H, T, T)
|
| 33 |
+
if attn_mask is not None:
|
| 34 |
+
att = att + attn_mask # mask should be broadcastable; use -inf on masked positions
|
| 35 |
+
att = F.softmax(att, dim=-1)
|
| 36 |
+
y = att @ v # (B, H, T, D)
|
| 37 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 38 |
+
y = self.out_proj(y)
|
| 39 |
+
return y
|
| 40 |
+
|
| 41 |
+
class MLP(nn.Module): # Fixed: Now inherits from nn.Module
|
| 42 |
+
def __init__(self, d_model: int, d_ff: int):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.fc1 = nn.Linear(d_model, d_ff)
|
| 45 |
+
self.fc2 = nn.Linear(d_ff, d_model)
|
| 46 |
+
self.activation = nn.ReLU()
|
| 47 |
+
|
| 48 |
+
def forward(self, x: torch.Tensor):
|
| 49 |
+
return self.fc2(self.activation(self.fc1(x)))
|
| 50 |
+
|
| 51 |
+
class TransformerLayer(nn.Module):
|
| 52 |
+
def __init__(self, d_model: int, n_heads: int, d_ff: int, dropout: float = 0.1):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.ln1 = nn.LayerNorm(d_model)
|
| 55 |
+
self.ln2 = nn.LayerNorm(d_model)
|
| 56 |
+
self.dropout = nn.Dropout(dropout)
|
| 57 |
+
self.self_attn = MultiheadSelfAttention(d_model, n_heads)
|
| 58 |
+
self.mlp = MLP(d_model, d_ff)
|
| 59 |
+
|
| 60 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 61 |
+
y = self.self_attn(self.ln1(x), attn_mask)
|
| 62 |
+
x = x + self.dropout(y)
|
| 63 |
+
y = self.mlp(self.ln2(x))
|
| 64 |
+
return x + self.dropout(y)
|
| 65 |
+
|
| 66 |
+
class Transformer(nn.Module):
|
| 67 |
+
def __init__(self, n_layers: int, d_model: int, n_heads: int, d_ff: int, vocab_size: int, dropout: float = 0.1):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.d_model = d_model
|
| 70 |
+
self.n_heads = n_heads
|
| 71 |
+
self.n_layers = n_layers
|
| 72 |
+
self.d_ff = d_ff
|
| 73 |
+
self.tok_emb = nn.Embedding(vocab_size, d_model)
|
| 74 |
+
self.pos_emb = nn.Embedding(2048, d_model) # simple fixed max length
|
| 75 |
+
self.layers = nn.ModuleList([
|
| 76 |
+
TransformerLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)
|
| 77 |
+
])
|
| 78 |
+
self.ln_f = nn.LayerNorm(d_model) # Added missing final LayerNorm
|
| 79 |
+
self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
|
| 80 |
+
self.lm_head.weight = self.tok_emb.weight # weight tying
|
| 81 |
+
|
| 82 |
+
def forward(self, idx: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 83 |
+
B, T = idx.shape
|
| 84 |
+
pos = torch.arange(0, T, device=idx.device).unsqueeze(0)
|
| 85 |
+
x = self.tok_emb(idx) + self.pos_emb(pos)
|
| 86 |
+
for layer in self.layers:
|
| 87 |
+
x = layer(x, attn_mask)
|
| 88 |
+
x = self.ln_f(x)
|
| 89 |
+
return self.lm_head(x)
|
| 90 |
+
|
| 91 |
+
# ---- LoRA ----
|
| 92 |
+
class LoRAAdapter(nn.Module):
|
| 93 |
+
def __init__(self, in_features: int, out_features: int, rank: int, alpha: float = 1.0,
|
| 94 |
+
weight: Optional[torch.Tensor] = None):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.rank = rank
|
| 97 |
+
self.alpha = alpha
|
| 98 |
+
if rank > 0:
|
| 99 |
+
self.A = nn.Parameter(torch.zeros((rank, in_features)))
|
| 100 |
+
self.B = nn.Parameter(torch.zeros((out_features, rank)))
|
| 101 |
+
|
| 102 |
+
# Initialize with SVD if base weight is provided
|
| 103 |
+
if weight is not None:
|
| 104 |
+
U, S, Vh = torch.linalg.svd(weight, full_matrices=False)
|
| 105 |
+
U = U[:, :rank]
|
| 106 |
+
S = S[:rank]
|
| 107 |
+
Vh = Vh[:rank, :]
|
| 108 |
+
self.A.data = Vh # (rank, in_features)
|
| 109 |
+
self.B.data = U @ torch.diag(S) # (out_features, rank)
|
| 110 |
+
else:
|
| 111 |
+
nn.init.normal_(self.A, std=1/rank)
|
| 112 |
+
nn.init.zeros_(self.B)
|
| 113 |
+
else:
|
| 114 |
+
self.register_parameter('A', None)
|
| 115 |
+
self.register_parameter('B', None)
|
| 116 |
+
|
| 117 |
+
def delta(self) -> Optional[torch.Tensor]:
|
| 118 |
+
if self.rank == 0 or self.A is None or self.B is None:
|
| 119 |
+
return None
|
| 120 |
+
return (self.B @ self.A) * (self.alpha / self.rank) # (out, in)
|
| 121 |
+
|
| 122 |
+
def lora_parameters(self):
|
| 123 |
+
if self.A is not None:
|
| 124 |
+
yield self.A
|
| 125 |
+
if self.B is not None:
|
| 126 |
+
yield self.B
|
| 127 |
+
|
| 128 |
+
class LoRALinear(nn.Module):
|
| 129 |
+
def __init__(self, linear: nn.Linear, rank: int, alpha: float = 1.0, num_repeats: int = 1):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.linear = linear # base frozen linear
|
| 132 |
+
self.rank = rank
|
| 133 |
+
self.num_repeats = num_repeats
|
| 134 |
+
|
| 135 |
+
if rank > 0:
|
| 136 |
+
self.loras = nn.ModuleList([
|
| 137 |
+
LoRAAdapter(linear.in_features, linear.out_features, rank, alpha)
|
| 138 |
+
for _ in range(num_repeats)
|
| 139 |
+
])
|
| 140 |
+
else:
|
| 141 |
+
self.loras = nn.ModuleList([])
|
| 142 |
+
|
| 143 |
+
def forward(self, x, repeat_idx: int = 0):
|
| 144 |
+
out = self.linear(x) # [batch, ..., out_features]
|
| 145 |
+
if self.rank == 0:
|
| 146 |
+
return out
|
| 147 |
+
delta = self.loras[repeat_idx].delta() # (out, in)
|
| 148 |
+
if delta is not None:
|
| 149 |
+
delta_t = delta # nn.Linear expects (out, in)
|
| 150 |
+
return out + F.linear(x, delta_t)
|
| 151 |
+
return out
|
| 152 |
+
|
| 153 |
+
def lora_parameters(self):
|
| 154 |
+
for lora in self.loras:
|
| 155 |
+
yield from lora.lora_parameters()
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class LoRAConv1D(nn.Module):
|
| 159 |
+
"""GPT-2 style Conv1D with LoRA support."""
|
| 160 |
+
def __init__(self, conv1d, rank: int, alpha: float = 1.0, num_repeats: int = 1):
|
| 161 |
+
super().__init__()
|
| 162 |
+
self.conv1d = conv1d # base GPT-2 Conv1D
|
| 163 |
+
self.rank = rank
|
| 164 |
+
self.num_repeats = num_repeats
|
| 165 |
+
in_features, out_features = conv1d.weight.shape # GPT-2 Conv1D: [in, out]
|
| 166 |
+
|
| 167 |
+
# Special handling for c_attn layer which has 3x output features
|
| 168 |
+
self.is_c_attn = (out_features % 3 == 0) and ("c_attn" in str(conv1d))
|
| 169 |
+
self.split_size = out_features // 3 if self.is_c_attn else out_features
|
| 170 |
+
|
| 171 |
+
if rank > 0:
|
| 172 |
+
if self.is_c_attn:
|
| 173 |
+
# Create separate LoRA adapters for Q, K, V projections
|
| 174 |
+
self.loras = nn.ModuleList([
|
| 175 |
+
nn.ModuleList([
|
| 176 |
+
LoRAAdapter(in_features, self.split_size, rank, alpha)
|
| 177 |
+
for _ in range(3) # Q, K, V
|
| 178 |
+
]) for _ in range(num_repeats)
|
| 179 |
+
])
|
| 180 |
+
else:
|
| 181 |
+
self.loras = nn.ModuleList([
|
| 182 |
+
LoRAAdapter(in_features, out_features, rank, alpha)
|
| 183 |
+
for _ in range(num_repeats)
|
| 184 |
+
])
|
| 185 |
+
else:
|
| 186 |
+
self.loras = nn.ModuleList([])
|
| 187 |
+
|
| 188 |
+
def forward(self, x, repeat_idx: int = 0):
|
| 189 |
+
"""
|
| 190 |
+
x: [batch, seq_len, in_features]
|
| 191 |
+
returns: [batch, seq_len, out_features]
|
| 192 |
+
"""
|
| 193 |
+
out = self.conv1d(x)
|
| 194 |
+
if self.rank == 0 or len(self.loras) == 0:
|
| 195 |
+
return out
|
| 196 |
+
|
| 197 |
+
if self.is_c_attn:
|
| 198 |
+
# Handle Q, K, V projections separately
|
| 199 |
+
deltas = []
|
| 200 |
+
for i in range(3):
|
| 201 |
+
delta = self.loras[repeat_idx][i].delta() # (split_size, in)
|
| 202 |
+
if delta is not None:
|
| 203 |
+
delta_t = delta.T # (in, split_size)
|
| 204 |
+
deltas.append(torch.matmul(x, delta_t))
|
| 205 |
+
if deltas:
|
| 206 |
+
return out + torch.cat(deltas, dim=-1)
|
| 207 |
+
return out
|
| 208 |
+
else:
|
| 209 |
+
delta = self.loras[repeat_idx].delta() # (out, in)
|
| 210 |
+
if delta is not None:
|
| 211 |
+
delta_t = delta.T # (in, out)
|
| 212 |
+
return out + torch.matmul(x, delta_t)
|
| 213 |
+
return out
|
| 214 |
+
|
| 215 |
+
def lora_parameters(self):
|
| 216 |
+
if self.is_c_attn:
|
| 217 |
+
for lora_group in self.loras:
|
| 218 |
+
for lora in lora_group:
|
| 219 |
+
yield from lora.lora_parameters()
|
| 220 |
+
else:
|
| 221 |
+
for lora in self.loras:
|
| 222 |
+
yield from lora.lora_parameters()
|
| 223 |
+
|
| 224 |
+
class SharedAttention(nn.Module):
|
| 225 |
+
def __init__(self, base_attn, num_repeats: int, lora_rank: int, lora_alpha: float):
|
| 226 |
+
super().__init__()
|
| 227 |
+
self.n_heads = base_attn.n_heads
|
| 228 |
+
self.d_head = base_attn.d_head
|
| 229 |
+
self.d_model = base_attn.d_model
|
| 230 |
+
|
| 231 |
+
self.q_proj = LoRALinear(base_attn.q_proj, lora_rank, lora_alpha, num_repeats)
|
| 232 |
+
self.k_proj = LoRALinear(base_attn.k_proj, lora_rank, lora_alpha, num_repeats)
|
| 233 |
+
self.v_proj = LoRALinear(base_attn.v_proj, lora_rank, lora_alpha, num_repeats)
|
| 234 |
+
self.out_proj = LoRALinear(base_attn.out_proj, lora_rank, lora_alpha, num_repeats)
|
| 235 |
+
|
| 236 |
+
def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None):
|
| 237 |
+
B, T, C = x.shape
|
| 238 |
+
H, D = self.n_heads, self.d_head
|
| 239 |
+
|
| 240 |
+
q = self.q_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
|
| 241 |
+
k = self.k_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
|
| 242 |
+
v = self.v_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
|
| 243 |
+
|
| 244 |
+
att = (q @ k.transpose(-2, -1)) / math.sqrt(D)
|
| 245 |
+
if attn_mask is not None:
|
| 246 |
+
att = att + attn_mask
|
| 247 |
+
att = F.softmax(att, dim=-1)
|
| 248 |
+
y = att @ v
|
| 249 |
+
y = y.transpose(1,2).contiguous().view(B, T, C)
|
| 250 |
+
return self.out_proj(y, repeat_idx)
|
| 251 |
+
|
| 252 |
+
class SharedMLP(nn.Module):
|
| 253 |
+
def __init__(self, base_mlp, num_repeats: int, lora_rank: int, lora_alpha: float):
|
| 254 |
+
super().__init__()
|
| 255 |
+
self.fc1 = LoRALinear(base_mlp.fc1, lora_rank, lora_alpha, num_repeats)
|
| 256 |
+
self.fc2 = LoRALinear(base_mlp.fc2, lora_rank, lora_alpha, num_repeats)
|
| 257 |
+
self.act = base_mlp.act
|
| 258 |
+
|
| 259 |
+
def forward(self, x, repeat_idx: int):
|
| 260 |
+
return self.fc2(self.act(self.fc1(x, repeat_idx)), repeat_idx)
|
| 261 |
+
|
| 262 |
+
class SharedTransformerLayer(nn.Module):
|
| 263 |
+
def __init__(self, base_layer, num_repeats: int, lora_rank: int, lora_alpha: float):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.ln1 = base_layer.ln1
|
| 266 |
+
self.ln2 = base_layer.ln2
|
| 267 |
+
self.dropout1 = base_layer.dropout1
|
| 268 |
+
self.dropout2 = base_layer.dropout2
|
| 269 |
+
self.attn = SharedAttention(base_layer.attn, num_repeats, lora_rank, lora_alpha)
|
| 270 |
+
self.mlp = SharedMLP(base_layer.mlp, num_repeats, lora_rank, lora_alpha)
|
| 271 |
+
|
| 272 |
+
def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None):
|
| 273 |
+
y = self.attn(self.ln1(x), repeat_idx, attn_mask)
|
| 274 |
+
x = x + self.dropout1(y)
|
| 275 |
+
y = self.mlp(self.ln2(x), repeat_idx)
|
| 276 |
+
x = x + self.dropout2(y)
|
| 277 |
+
return x
|
| 278 |
+
|
| 279 |
+
# ---- Conversion Utilities ----
|
| 280 |
+
def average_weights(layers, attr):
|
| 281 |
+
weights = [getattr(layer, attr).weight.data for layer in layers]
|
| 282 |
+
return torch.stack(weights, dim=0).mean(dim=0)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def initialize_lora_with_svd(lora_layer, original_weights, repeat_indices, rank):
|
| 286 |
+
"""
|
| 287 |
+
original_weights: list of original weights for each repeat index
|
| 288 |
+
repeat_indices: which repeat indices these weights correspond to
|
| 289 |
+
"""
|
| 290 |
+
shared_weight = lora_layer.base_layer.weight.data.clone()
|
| 291 |
+
|
| 292 |
+
for idx, orig_weight in zip(repeat_indices, original_weights):
|
| 293 |
+
residual = orig_weight - shared_weight
|
| 294 |
+
U, S, Vh = torch.linalg.svd(residual, full_matrices=False)
|
| 295 |
+
|
| 296 |
+
# Truncate to rank
|
| 297 |
+
U = U[:, :rank]
|
| 298 |
+
S = S[:rank]
|
| 299 |
+
Vh = Vh[:rank, :]
|
| 300 |
+
|
| 301 |
+
# Initialize LoRA weights
|
| 302 |
+
lora_layer.lora_A[idx].weight.data = Vh # A = Vᵣᵀ
|
| 303 |
+
lora_layer.lora_B[idx].weight.data = U @ torch.diag(S) # B = UᵣΣᵣ
|
| 304 |
+
|
| 305 |
+
def convert_to_recursive(model, K=2, rank=8, lora_alpha=1.0):
|
| 306 |
+
n_layers = len(model.transformer.h)
|
| 307 |
+
new_blocks = []
|
| 308 |
+
|
| 309 |
+
for b in range(n_layers // K):
|
| 310 |
+
block_layers = model.transformer.h[b*K:(b+1)*K]
|
| 311 |
+
base_layer = copy.deepcopy(block_layers[0])
|
| 312 |
+
|
| 313 |
+
# Average weights across the block for shared parameters
|
| 314 |
+
with torch.no_grad():
|
| 315 |
+
if hasattr(base_layer.attn, 'c_attn'):
|
| 316 |
+
shared_weight = average_weights([l.attn for l in block_layers], 'c_attn')
|
| 317 |
+
base_layer.attn.c_attn.weight.data = shared_weight
|
| 318 |
+
|
| 319 |
+
if hasattr(base_layer.attn, 'c_proj'):
|
| 320 |
+
shared_weight = average_weights([l.attn for l in block_layers], 'c_proj')
|
| 321 |
+
base_layer.attn.c_proj.weight.data = shared_weight
|
| 322 |
+
|
| 323 |
+
if hasattr(base_layer.mlp, 'c_fc'):
|
| 324 |
+
shared_weight = average_weights([l.mlp for l in block_layers], 'c_fc')
|
| 325 |
+
base_layer.mlp.c_fc.weight.data = shared_weight
|
| 326 |
+
|
| 327 |
+
if hasattr(base_layer.mlp, 'c_proj'):
|
| 328 |
+
shared_weight = average_weights([l.mlp for l in block_layers], 'c_proj')
|
| 329 |
+
base_layer.mlp.c_proj.weight.data = shared_weight
|
| 330 |
+
|
| 331 |
+
# Convert to LoRA
|
| 332 |
+
if hasattr(base_layer.attn, 'c_attn'):
|
| 333 |
+
base_layer.attn.c_attn = LoRAConv1D(
|
| 334 |
+
base_layer.attn.c_attn, rank, lora_alpha, K
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
if hasattr(base_layer.attn, 'c_proj'):
|
| 338 |
+
base_layer.attn.c_proj = LoRAConv1D(
|
| 339 |
+
base_layer.attn.c_proj, rank, lora_alpha, K
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
if hasattr(base_layer.mlp, 'c_fc'):
|
| 343 |
+
base_layer.mlp.c_fc = LoRAConv1D(
|
| 344 |
+
base_layer.mlp.c_fc, rank, lora_alpha, K
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
if hasattr(base_layer.mlp, 'c_proj'):
|
| 348 |
+
base_layer.mlp.c_proj = LoRAConv1D(
|
| 349 |
+
base_layer.mlp.c_proj, rank, lora_alpha, K
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
new_blocks.append(base_layer)
|
| 353 |
+
|
| 354 |
+
model.transformer.h = nn.ModuleList(new_blocks)
|
| 355 |
+
return model
|
| 356 |
|
| 357 |
class RecursiveGPT2Config(GPT2Config):
|
| 358 |
model_type = "recursive_gpt2"
|