import copy import torch import torch.nn as nn import torch.nn.functional as F import math from typing import List, Optional from transformer import MultiheadSelfAttention, MLP, TransformerLayer from lora_layer import LoRALinear, LoRAAdapter, LoRAConv1D class SharedAttention(nn.Module): def __init__(self, base_attn, num_repeats: int, lora_rank: int, lora_alpha: float): super().__init__() self.n_heads = base_attn.n_heads self.d_head = base_attn.d_head self.d_model = base_attn.d_model self.q_proj = LoRALinear(base_attn.q_proj, lora_rank, lora_alpha, num_repeats) self.k_proj = LoRALinear(base_attn.k_proj, lora_rank, lora_alpha, num_repeats) self.v_proj = LoRALinear(base_attn.v_proj, lora_rank, lora_alpha, num_repeats) self.out_proj = LoRALinear(base_attn.out_proj, lora_rank, lora_alpha, num_repeats) def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None): B, T, C = x.shape H, D = self.n_heads, self.d_head q = self.q_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2) k = self.k_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2) v = self.v_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2) att = (q @ k.transpose(-2, -1)) / math.sqrt(D) if attn_mask is not None: att = att + attn_mask att = F.softmax(att, dim=-1) y = att @ v y = y.transpose(1,2).contiguous().view(B, T, C) return self.out_proj(y, repeat_idx) class SharedMLP(nn.Module): def __init__(self, base_mlp, num_repeats: int, lora_rank: int, lora_alpha: float): super().__init__() self.fc1 = LoRALinear(base_mlp.fc1, lora_rank, lora_alpha, num_repeats) self.fc2 = LoRALinear(base_mlp.fc2, lora_rank, lora_alpha, num_repeats) self.act = base_mlp.act def forward(self, x, repeat_idx: int): return self.fc2(self.act(self.fc1(x, repeat_idx)), repeat_idx) class SharedTransformerLayer(nn.Module): def __init__(self, base_layer, num_repeats: int, lora_rank: int, lora_alpha: float): super().__init__() self.ln1 = base_layer.ln1 self.ln2 = base_layer.ln2 self.dropout1 = base_layer.dropout1 self.dropout2 = base_layer.dropout2 self.attn = SharedAttention(base_layer.attn, num_repeats, lora_rank, lora_alpha) self.mlp = SharedMLP(base_layer.mlp, num_repeats, lora_rank, lora_alpha) def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None): y = self.attn(self.ln1(x), repeat_idx, attn_mask) x = x + self.dropout1(y) y = self.mlp(self.ln2(x), repeat_idx) x = x + self.dropout2(y) return x # ---- Conversion Utilities ---- def average_weights(layers, attr): weights = [getattr(layer, attr).weight.data for layer in layers] return torch.stack(weights, dim=0).mean(dim=0) def initialize_lora_with_svd(lora_layer, original_weights, repeat_indices, rank): """ original_weights: list of original weights for each repeat index repeat_indices: which repeat indices these weights correspond to """ shared_weight = lora_layer.base_layer.weight.data.clone() for idx, orig_weight in zip(repeat_indices, original_weights): residual = orig_weight - shared_weight U, S, Vh = torch.linalg.svd(residual, full_matrices=False) # Truncate to rank U = U[:, :rank] S = S[:rank] Vh = Vh[:rank, :] # Initialize LoRA weights lora_layer.lora_A[idx].weight.data = Vh # A = Vᵣᵀ lora_layer.lora_B[idx].weight.data = U @ torch.diag(S) # B = UᵣΣᵣ def convert_to_recursive(model, K=2, rank=8, lora_alpha=1.0): n_layers = len(model.transformer.h) new_blocks = [] for b in range(n_layers // K): block_layers = model.transformer.h[b*K:(b+1)*K] base_layer = copy.deepcopy(block_layers[0]) # Average weights across the block for shared parameters with torch.no_grad(): if hasattr(base_layer.attn, 'c_attn'): shared_weight = average_weights([l.attn for l in block_layers], 'c_attn') base_layer.attn.c_attn.weight.data = shared_weight if hasattr(base_layer.attn, 'c_proj'): shared_weight = average_weights([l.attn for l in block_layers], 'c_proj') base_layer.attn.c_proj.weight.data = shared_weight if hasattr(base_layer.mlp, 'c_fc'): shared_weight = average_weights([l.mlp for l in block_layers], 'c_fc') base_layer.mlp.c_fc.weight.data = shared_weight if hasattr(base_layer.mlp, 'c_proj'): shared_weight = average_weights([l.mlp for l in block_layers], 'c_proj') base_layer.mlp.c_proj.weight.data = shared_weight # Convert to LoRA if hasattr(base_layer.attn, 'c_attn'): base_layer.attn.c_attn = LoRAConv1D( base_layer.attn.c_attn, rank, lora_alpha, K ) if hasattr(base_layer.attn, 'c_proj'): base_layer.attn.c_proj = LoRAConv1D( base_layer.attn.c_proj, rank, lora_alpha, K ) if hasattr(base_layer.mlp, 'c_fc'): base_layer.mlp.c_fc = LoRAConv1D( base_layer.mlp.c_fc, rank, lora_alpha, K ) if hasattr(base_layer.mlp, 'c_proj'): base_layer.mlp.c_proj = LoRAConv1D( base_layer.mlp.c_proj, rank, lora_alpha, K ) new_blocks.append(base_layer) model.transformer.h = nn.ModuleList(new_blocks) return model