Commit 
							
							·
						
						561af7c
	
1
								Parent(s):
							
							21b7204
								
Upload ./ with huggingface_hub
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,72 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: apache-2.0
         | 
| 3 | 
            +
            library_name: sklearn
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - tabular-classification
         | 
| 6 | 
            +
            - baseline-trainer
         | 
| 7 | 
            +
            ---
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            ## Baseline Model trained on heart1ohr2x9e to apply classification on target
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            **Metrics of the best model:**
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            accuracy             0.885854
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            average_precision    0.949471
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            roc_auc              0.050633
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            recall_macro         0.885324
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            f1_macro             0.885610
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            **See model plot below:**
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            <style>#sk-container-id-8 {color: black;background-color: white;}#sk-container-id-8 pre{padding: 0;}#sk-container-id-8 div.sk-toggleable {background-color: white;}#sk-container-id-8 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-8 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-8 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-8 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-8 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-8 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-8 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-8 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-8 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-8 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-8 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-8 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-8 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-8 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-8 div.sk-item {position: relative;z-index: 1;}#sk-container-id-8 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-8 div.sk-item::before, #sk-container-id-8 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-8 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-8 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-8 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-8 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-8 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-8 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-8 div.sk-label-container {text-align: center;}#sk-container-id-8 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-8 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-8" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=          continuous  dirty_float  low_card_int  ...   date  free_string  useless
         | 
| 30 | 
            +
            age            False        False         False  ...  False        False    False
         | 
| 31 | 
            +
            sex            False        False         False  ...  False        False    False
         | 
| 32 | 
            +
            cp             False        False         False  ...  False        False    False
         | 
| 33 | 
            +
            trestbps        True        False         False  ...  False        False    False
         | 
| 34 | 
            +
            chol            True        False         False  ...  False        False    False
         | 
| 35 | 
            +
            fbs            False        False         False  ...  False        False    False
         | 
| 36 | 
            +
            restecg        False        Fa......  False        False    False
         | 
| 37 | 
            +
            thalach         True        False         False  ...  False        False    False
         | 
| 38 | 
            +
            exang          False        False         False  ...  False        False    False
         | 
| 39 | 
            +
            oldpeak         True        False         False  ...  False        False    False
         | 
| 40 | 
            +
            slope          False        False         False  ...  False        False    False
         | 
| 41 | 
            +
            ca             False        False         False  ...  False        False    False
         | 
| 42 | 
            +
            thal           False        False         False  ...  False        False    False[13 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-24" type="checkbox" ><label for="sk-estimator-id-24" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=          continuous  dirty_float  low_card_int  ...   date  free_string  useless
         | 
| 43 | 
            +
            age            False        False         False  ...  False        False    False
         | 
| 44 | 
            +
            sex            False        False         False  ...  False        False    False
         | 
| 45 | 
            +
            cp             False        False         False  ...  False        False    False
         | 
| 46 | 
            +
            trestbps        True        False         False  ...  False        False    False
         | 
| 47 | 
            +
            chol            True        False         False  ...  False        False    False
         | 
| 48 | 
            +
            fbs            False        False         False  ...  False        False    False
         | 
| 49 | 
            +
            restecg        False        Fa......  False        False    False
         | 
| 50 | 
            +
            thalach         True        False         False  ...  False        False    False
         | 
| 51 | 
            +
            exang          False        False         False  ...  False        False    False
         | 
| 52 | 
            +
            oldpeak         True        False         False  ...  False        False    False
         | 
| 53 | 
            +
            slope          False        False         False  ...  False        False    False
         | 
| 54 | 
            +
            ca             False        False         False  ...  False        False    False
         | 
| 55 | 
            +
            thal           False        False         False  ...  False        False    False[13 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-25" type="checkbox" ><label for="sk-estimator-id-25" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types=          continuous  dirty_float  low_card_int  ...   date  free_string  useless
         | 
| 56 | 
            +
            age            False        False         False  ...  False        False    False
         | 
| 57 | 
            +
            sex            False        False         False  ...  False        False    False
         | 
| 58 | 
            +
            cp             False        False         False  ...  False        False    False
         | 
| 59 | 
            +
            trestbps        True        False         False  ...  False        False    False
         | 
| 60 | 
            +
            chol            True        False         False  ...  False        False    False
         | 
| 61 | 
            +
            fbs            False        False         False  ...  False        False    False
         | 
| 62 | 
            +
            restecg        False        False         False  ...  False        False    False
         | 
| 63 | 
            +
            thalach         True        False         False  ...  False        False    False
         | 
| 64 | 
            +
            exang          False        False         False  ...  False        False    False
         | 
| 65 | 
            +
            oldpeak         True        False         False  ...  False        False    False
         | 
| 66 | 
            +
            slope          False        False         False  ...  False        False    False
         | 
| 67 | 
            +
            ca             False        False         False  ...  False        False    False
         | 
| 68 | 
            +
            thal           False        False         False  ...  False        False    False[13 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-26" type="checkbox" ><label for="sk-estimator-id-26" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=1, class_weight='balanced', max_iter=1000)</pre></div></div></div></div></div></div></div>
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            **Logs of training** including the models tried in the process can be found in logs.txt
         | 
    	
        clf.pkl
    ADDED
    
    | Binary file (10.4 kB). View file | 
|  | 
    	
        logs.txt
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            Logging training
         | 
| 2 | 
            +
            Running DummyClassifier()
         | 
| 3 | 
            +
            accuracy: 0.513 average_precision: 0.487 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.339
         | 
| 4 | 
            +
            === new best DummyClassifier() (using recall_macro):
         | 
| 5 | 
            +
            accuracy: 0.513 average_precision: 0.487 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.339
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            Running GaussianNB()
         | 
| 8 | 
            +
            accuracy: 0.592 average_precision: 0.669 roc_auc: 0.824 recall_macro: 0.602 f1_macro: 0.534
         | 
| 9 | 
            +
            === new best GaussianNB() (using recall_macro):
         | 
| 10 | 
            +
            accuracy: 0.592 average_precision: 0.669 roc_auc: 0.824 recall_macro: 0.602 f1_macro: 0.534
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            Running MultinomialNB()
         | 
| 13 | 
            +
            accuracy: 0.857 average_precision: 0.934 roc_auc: 0.931 recall_macro: 0.856 f1_macro: 0.856
         | 
| 14 | 
            +
            === new best MultinomialNB() (using recall_macro):
         | 
| 15 | 
            +
            accuracy: 0.857 average_precision: 0.934 roc_auc: 0.931 recall_macro: 0.856 f1_macro: 0.856
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
         | 
| 18 | 
            +
            accuracy: 0.749 average_precision: 0.680 roc_auc: 0.749 recall_macro: 0.749 f1_macro: 0.749
         | 
| 19 | 
            +
            Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
         | 
| 20 | 
            +
            accuracy: 0.883 average_precision: 0.943 roc_auc: 0.940 recall_macro: 0.882 f1_macro: 0.882
         | 
| 21 | 
            +
            === new best DecisionTreeClassifier(class_weight='balanced', max_depth=5) (using recall_macro):
         | 
| 22 | 
            +
            accuracy: 0.883 average_precision: 0.943 roc_auc: 0.940 recall_macro: 0.882 f1_macro: 0.882
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
         | 
| 25 | 
            +
            accuracy: 0.833 average_precision: 0.857 roc_auc: 0.878 recall_macro: 0.832 f1_macro: 0.833
         | 
| 26 | 
            +
            Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
         | 
| 27 | 
            +
            accuracy: 0.873 average_precision: 0.941 roc_auc: 0.060 recall_macro: 0.872 f1_macro: 0.873
         | 
| 28 | 
            +
            Running LogisticRegression(class_weight='balanced', max_iter=1000)
         | 
| 29 | 
            +
            accuracy: 0.886 average_precision: 0.949 roc_auc: 0.051 recall_macro: 0.885 f1_macro: 0.886
         | 
| 30 | 
            +
            === new best LogisticRegression(class_weight='balanced', max_iter=1000) (using recall_macro):
         | 
| 31 | 
            +
            accuracy: 0.886 average_precision: 0.949 roc_auc: 0.051 recall_macro: 0.885 f1_macro: 0.886
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            Best model:
         | 
| 35 | 
            +
            LogisticRegression(class_weight='balanced', max_iter=1000)
         | 
| 36 | 
            +
            Best Scores:
         | 
| 37 | 
            +
            accuracy: 0.886 average_precision: 0.949 roc_auc: 0.051 recall_macro: 0.885 f1_macro: 0.886
         |