Upload folder using huggingface_hub
Browse files- README.md +119 -0
- config.json +28 -0
- model.safetensors +3 -0
- special_tokens_map.json +3 -0
- tokenization_vulberta.py +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +26 -0
README.md
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
arxiv: 2205.12424
|
| 4 |
+
datasets:
|
| 5 |
+
- code_x_glue_cc_defect_detection
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
- precision
|
| 9 |
+
- recall
|
| 10 |
+
- f1
|
| 11 |
+
- roc_auc
|
| 12 |
+
model-index:
|
| 13 |
+
- name: VulBERTa MLP
|
| 14 |
+
results:
|
| 15 |
+
- task:
|
| 16 |
+
type: defect-detection
|
| 17 |
+
dataset:
|
| 18 |
+
name: codexglue-devign
|
| 19 |
+
type: codexglue-devign
|
| 20 |
+
metrics:
|
| 21 |
+
- name: Accuracy
|
| 22 |
+
type: Accuracy
|
| 23 |
+
value: 64.71
|
| 24 |
+
- name: Precision
|
| 25 |
+
type: Precision
|
| 26 |
+
value: 64.80
|
| 27 |
+
- name: Recall
|
| 28 |
+
type: Recall
|
| 29 |
+
value: 50.76
|
| 30 |
+
- name: F1
|
| 31 |
+
type: F1
|
| 32 |
+
value: 56.93
|
| 33 |
+
- name: ROC-AUC
|
| 34 |
+
type: ROC-AUC
|
| 35 |
+
value: 71.02
|
| 36 |
+
pipeline_tag: text-classification
|
| 37 |
+
tags:
|
| 38 |
+
- devign
|
| 39 |
+
- defect detection
|
| 40 |
+
- code
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
# VulBERTa MLP Devign
|
| 44 |
+
## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
|
| 45 |
+
|
| 46 |
+

|
| 47 |
+
|
| 48 |
+
## Overview
|
| 49 |
+
This model is the unofficial HuggingFace version of "[VulBERTa](https://github.com/ICL-ml4csec/VulBERTa/tree/main)" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass.
|
| 50 |
+
|
| 51 |
+
> This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
|
| 52 |
+
|
| 53 |
+
## Usage
|
| 54 |
+
**You must install libclang for tokenization.**
|
| 55 |
+
|
| 56 |
+
```bash
|
| 57 |
+
pip install libclang
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
Note that due to the custom tokenizer, you must pass `trust_remote_code=True` when instantiating the model.
|
| 61 |
+
Example:
|
| 62 |
+
```
|
| 63 |
+
from transformers import pipeline
|
| 64 |
+
pipe = pipeline("text-classification", model="claudios/VulBERTa-MLP-Devign", trust_remote_code=True, return_all_scores=True)
|
| 65 |
+
pipe("static void filter_mirror_setup(NetFilterState *nf, Error **errp)\n{\n MirrorState *s = FILTER_MIRROR(nf);\n Chardev *chr;\n chr = qemu_chr_find(s->outdev);\n if (chr == NULL) {\n error_set(errp, ERROR_CLASS_DEVICE_NOT_FOUND,\n \"Device '%s' not found\", s->outdev);\n qemu_chr_fe_init(&s->chr_out, chr, errp);")
|
| 66 |
+
>> [[{'label': 'LABEL_0', 'score': 0.014685827307403088},
|
| 67 |
+
{'label': 'LABEL_1', 'score': 0.985314130783081}]]
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
***
|
| 71 |
+
|
| 72 |
+
## Data
|
| 73 |
+
We provide all data required by VulBERTa.
|
| 74 |
+
This includes:
|
| 75 |
+
- Tokenizer training data
|
| 76 |
+
- Pre-training data
|
| 77 |
+
- Fine-tuning data
|
| 78 |
+
|
| 79 |
+
Please refer to the [data](https://github.com/ICL-ml4csec/VulBERTa/tree/main/data "data") directory for further instructions and details.
|
| 80 |
+
|
| 81 |
+
## Models
|
| 82 |
+
We provide all models pre-trained and fine-tuned by VulBERTa.
|
| 83 |
+
This includes:
|
| 84 |
+
- Trained tokenisers
|
| 85 |
+
- Pre-trained VulBERTa model (core representation knowledge)
|
| 86 |
+
- Fine-tuned VulBERTa-MLP and VulBERTa-CNN models
|
| 87 |
+
|
| 88 |
+
Please refer to the [models](https://github.com/ICL-ml4csec/VulBERTa/tree/main/models "models") directory for further instructions and details.
|
| 89 |
+
|
| 90 |
+
## How to use
|
| 91 |
+
|
| 92 |
+
In our project, we uses Jupyterlab notebook to run experiments.
|
| 93 |
+
Therefore, we separate each task into different notebook:
|
| 94 |
+
|
| 95 |
+
- [Pretraining_VulBERTa.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Pretraining_VulBERTa.ipynb "Pretraining_VulBERTa.ipynb") - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset.
|
| 96 |
+
- [Finetuning_VulBERTa-MLP.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Finetuning_VulBERTa-MLP.ipynb "Finetuning_VulBERTa-MLP.ipynb") - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset.
|
| 97 |
+
- [Evaluation_VulBERTa-MLP.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Evaluation_VulBERTa-MLP.ipynb "Evaluation_VulBERTa-MLP.ipynb") - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset.
|
| 98 |
+
- [Finetuning+evaluation_VulBERTa-CNN](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Finetuning%2Bevaluation_VulBERTa-CNN.ipynb "Finetuning+evaluation_VulBERTa-CNN.ipynb") - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset.
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
## Citation
|
| 102 |
+
|
| 103 |
+
Accepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022.
|
| 104 |
+
Link to paper: https://ieeexplore.ieee.org/document/9892280
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
```bibtex
|
| 108 |
+
@INPROCEEDINGS{hanif2022vulberta,
|
| 109 |
+
author={Hanif, Hazim and Maffeis, Sergio},
|
| 110 |
+
booktitle={2022 International Joint Conference on Neural Networks (IJCNN)},
|
| 111 |
+
title={VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection},
|
| 112 |
+
year={2022},
|
| 113 |
+
volume={},
|
| 114 |
+
number={},
|
| 115 |
+
pages={1-8},
|
| 116 |
+
doi={10.1109/IJCNN55064.2022.9892280}
|
| 117 |
+
|
| 118 |
+
}
|
| 119 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "VulBERTa-MLP-Draper",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-12,
|
| 17 |
+
"max_position_embeddings": 1026,
|
| 18 |
+
"model_type": "roberta",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 12,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.37.0.dev0",
|
| 25 |
+
"type_vocab_size": 1,
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 50000
|
| 28 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cbb63a2a5cf9725db3ead432a165007adadf84c8d7b44eb01703fb5484ec1310
|
| 3 |
+
size 499371608
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pad_token": "<pad>"
|
| 3 |
+
}
|
tokenization_vulberta.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
from tokenizers import NormalizedString, PreTokenizedString
|
| 4 |
+
from tokenizers.pre_tokenizers import PreTokenizer
|
| 5 |
+
from transformers import PreTrainedTokenizerFast
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
from clang import cindex
|
| 9 |
+
except ModuleNotFoundError as e:
|
| 10 |
+
raise ModuleNotFoundError(
|
| 11 |
+
"VulBERTa Clang tokenizer requires `libclang`. Please install it via `pip install libclang`.",
|
| 12 |
+
) from e
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class ClangPreTokenizer:
|
| 16 |
+
cidx = cindex.Index.create()
|
| 17 |
+
|
| 18 |
+
def clang_split(
|
| 19 |
+
self,
|
| 20 |
+
i: int,
|
| 21 |
+
normalized_string: NormalizedString,
|
| 22 |
+
) -> List[NormalizedString]:
|
| 23 |
+
tok = []
|
| 24 |
+
tu = self.cidx.parse(
|
| 25 |
+
"tmp.c",
|
| 26 |
+
args=[""],
|
| 27 |
+
unsaved_files=[("tmp.c", str(normalized_string.original))],
|
| 28 |
+
options=0,
|
| 29 |
+
)
|
| 30 |
+
for t in tu.get_tokens(extent=tu.cursor.extent):
|
| 31 |
+
spelling = t.spelling.strip()
|
| 32 |
+
if spelling == "":
|
| 33 |
+
continue
|
| 34 |
+
tok.append(NormalizedString(spelling))
|
| 35 |
+
return tok
|
| 36 |
+
|
| 37 |
+
def pre_tokenize(self, pretok: PreTokenizedString):
|
| 38 |
+
pretok.split(self.clang_split)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class VulBERTaTokenizer(PreTrainedTokenizerFast):
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
*args,
|
| 45 |
+
**kwargs,
|
| 46 |
+
):
|
| 47 |
+
super().__init__(
|
| 48 |
+
*args,
|
| 49 |
+
**kwargs,
|
| 50 |
+
)
|
| 51 |
+
self._tokenizer.pre_tokenizer = PreTokenizer.custom(ClangPreTokenizer())
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"1": {
|
| 4 |
+
"content": "<pad>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
}
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": true,
|
| 13 |
+
"max_length": 1024,
|
| 14 |
+
"model_max_length": 1024,
|
| 15 |
+
"pad_to_multiple_of": null,
|
| 16 |
+
"pad_token": "<pad>",
|
| 17 |
+
"pad_token_type_id": 0,
|
| 18 |
+
"padding_side": "right",
|
| 19 |
+
"stride": 0,
|
| 20 |
+
"tokenizer_class": "VulBERTaTokenizer",
|
| 21 |
+
"auto_map": {
|
| 22 |
+
"AutoTokenizer": ["tokenization_vulberta.VulBERTaTokenizer", null]
|
| 23 |
+
},
|
| 24 |
+
"truncation_side": "right",
|
| 25 |
+
"truncation_strategy": "longest_first"
|
| 26 |
+
}
|