File size: 9,424 Bytes
53ad20a 9bac9bd 0006b8d 9bac9bd 0006b8d 9bac9bd 53ad20a 708fe08 9bac9bd 708fe08 9bac9bd 708fe08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
library_name: sentence-transformers
license: mit
language: nl
base_model:
- intfloat/e5-small-v2
pipeline_tag: sentence-similarity
tags:
- transformers
---
# E5-small-v2-t2t
This model is a Dutch-adapted version of [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2), created with [`transtokenizer`](https://github.com/LAGoM-NLP/transtokenizer) from the tokenizer of [BERTje](https://huggingface.co/GroNLP/bert-base-dutch-cased).
This tool initializes token embeddings in the target language by computing a weighted average of semantically similar embeddings from the source language.
## Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Each input text should start with "query: " or "passage: ".
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = [
'query: hoeveel eiwitten moet een vrouw eten',
'query: top definieer',
"passage: Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.",
"passage: Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen."
]
tokenizer = AutoTokenizer.from_pretrained('clips/e5-small-v2-t2t')
model = AutoModel.from_pretrained('clips/e5-small-v2-t2t')
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
Below is an example for usage with sentence_transformers.
```python
from sentence_transformers import SentenceTransformer
# Load the model from Hugging Face
model = SentenceTransformer("clips/e5-small-v2-t2t")
# Perform inference using encode_query/encode_document for retrieval,
# or encode_query for general purpose embeddings. Prompt prefixes
# are automatically added with these two methods.
queries = [
'hoeveel eiwitten moet een vrouw eten',
'top definieer',
]
documents = [
'Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.',
'Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# (2, 384) (2, 384)
similarities = model.similarity(query_embeddings, document_embeddings)
# tensor([[0.8925, 0.7103],
# [0.7628, 0.8410]])
```
## Benchmark Evaluation
Results on MTEB-NL (models introduced in [our paper](https://arxiv.org/abs/2509.12340) and the best model per size category are highlighted in bold):
| Model | Prm | Cls | MLCls | PCls | Rrnk | Rtr | Clust | STS | AvgD | AvgT |
|---------------------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| **Num. Datasets (→)** | | 12 | 3 | 2 | 1 | 12 | 8 | 2 | 40 | |
| **Supervised (small, <100M)** | | | | | | | | | | |
| **e5-small-v2-t2t** | 33M | 53.7 | 38.5 | 74.5 | 85.9 | 45.0 | 24.1 | 74.3 | 46.9 | 56.6 |
| **e5-small-v2-t2t-nl** | 33M | 55.3 | 40.9 | 74.9 | 86.0 | 49.9 | 28.0 | 74.1 | 49.8 | 58.4 |
| **e5-small-trm** | 41M | 56.3 | 43.5 | **76.5** | **87.3** | 53.1 | 28.2 | 74.2 | 51.4 | 59.9 |
| **e5-small-trm-nl** | 41M | **58.2** | **44.7** | 76.0 | 87.1 | **56.0** | **32.2** | **74.6** | **53.8** | **61.3** |
| **Supervised (base, <305M)** | | | | | | | | | | |
| granite-embedding-107m-multilingual | 107M | 53.9 | 41.8 | 70.1 | 84.7 | 50.2 | 29.8 | 68.4 | 49.4 | 57.0 |
| **e5-base-v2-t2t** | 109M | 54.4 | 40.3 | 73.3 | 85.6 | 46.2 | 25.5 | 73.2 | 47.8 | 56.9 |
| **e5-base-v2-t2t-nl** | 109M | 53.9 | 41.5 | 72.5 | 84.0 | 46.4 | 26.9 | 69.3 | 47.8 | 56.3 |
| multilingual-e5-small | 118M | 56.3 | 43.5 | 76.5 | 87.1 | 53.1 | 28.2 | 74.2 | 51.4 | 59.8 |
| paraphrase-multilingual-MiniLM-L12-v2 | 118M | 55.0 | 38.1 | 78.2 | 80.6 | 37.7 | 29.6 | 76.3 | 46.3 | 56.5 |
| **RobBERT-2023-base-ft** | 124M | 58.1 | 44.6 | 72.7 | 84.7 | 51.6 | 32.9 | 68.5 | 52.0 | 59.0 |
| **e5-base-trm** | 124M | 58.1 | 44.4 | 76.7 | 88.3 | 55.8 | 28.1 | 74.9 | 52.9 | 60.9 |
| **e5-base-trm-nl** | 124M | **59.6** | **45.9** | 78.4 | 87.5 | 56.5 | **34.3** | 75.8 | **55.0** | **62.6** |
| potion-multilingual-128M | 128M | 51.8 | 40.0 | 60.4 | 80.3 | 35.7 | 26.1 | 62.0 | 42.6 | 50.9 |
| multilingual-e5-base | 278M | 58.2 | 44.4 | 76.7 | **88.4** | 55.8 | 27.7 | 74.9 | 52.8 | 60.9 |
| granite-embedding-278m-multilingual | 278M | 54.6 | 41.8 | 71.0 | 85.6 | 52.4 | 30.3 | 68.9 | 50.5 | 58.0 |
| paraphrase-multilingual-mpnet-base-v2 | 278M | 58.1 | 40.5 | **81.9** | 82.3 | 41.4 | 30.8 | 79.3 | 49.2 | 59.2 |
| Arctic-embed-m-v2.0 | 305M | 54.4 | 42.6 | 66.6 | 86.2 | 51.8 | 26.5 | 64.9 | 49.1 | 56.1 |
| gte-multilingual-base | 305M | 59.1 | 37.7 | 77.8 | 82.3 | **56.8** | 31.3 | **78.6** | 53.8 | 60.5 |
| **Supervised (large, >305M)** | | | | | | | | | | |
| **e5-large-v2-t2t** | 335M | 55.7 | 41.4 | 75.7 | 86.6 | 49.9 | 25.5 | 74.0 | 49.5 | 58.4 |
| **e5-large-v2-t2t-nl** | 335M | 57.3 | 42.4 | 76.9 | 86.9 | 50.8 | 27.7 | 74.1 | 51.7 | 59.4 |
| **RobBERT-2023-large-ft** | 355M | 59.3 | 45.2 | 68.7 | 82.3 | 48.3 | 31.6 | 70.6 | 51.0 | 58.0 |
| **e5-large-trm** | 355M | 60.2 | 45.4 | 80.3 | 90.3 | 59.0 | 28.7 | 78.8 | 55.1 | 63.3 |
| **e5-large-trm-nl** | 355M | **62.2** | **48.0** | **81.4** | 87.2 | 58.2 | 35.6 | 78.2 | **57.0** | **64.4** |
| multilingual-e5-large | 560M | 60.2 | 45.4 | 80.3 | **90.3** | 59.1 | 29.5 | 78.8 | 55.3 | 63.4 |
| Arctic-embed-l-v2.0 | 568M | 59.3 | 45.2 | 74.2 | 88.2 | 59.0 | 29.8 | 71.7 | 54.3 | 61.1 |
| bge-m3 | 568M | 60.7 | 44.2 | 78.3 | 88.7 | **60.0** | 29.2 | 78.1 | 55.4 | 63.1 |
| jina-embeddings-v3 | 572M | 61.7 | 38.9 | 76.8 | 78.5 | 59.1 | **38.9** | **84.8** | **57.0** | 62.7 |
### Citation Information
If you find our paper, benchmark or models helpful, please consider cite as follows:
```latex
@misc{banar2025mtebnle5nlembeddingbenchmark,
title={MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
author={Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
year={2025},
eprint={2509.12340},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.12340},
}
```
[//]: # (https://arxiv.org/abs/2509.12340) |