File size: 3,662 Bytes
f231ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: apache-2.0
base_model: studio-ousia/luke-base
tags:
- generated_from_trainer
metrics:
- accuracy
- rouge
model-index:
- name: 0f2142e9bd37e0ab1f2155dead0be1e5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 0f2142e9bd37e0ab1f2155dead0be1e5

This model is a fine-tuned version of [studio-ousia/luke-base](https://huggingface.co/studio-ousia/luke-base) on the nyu-mll/glue [cola] dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5325
- Data Size: 1.0
- Epoch Runtime: 25.4994
- Accuracy: 0.8115
- F1 Macro: 0.7662
- Rouge1: 0.8115
- Rouge2: 0.0
- Rougel: 0.8115
- Rougelsum: 0.8115

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:|
| No log        | 0     | 0    | 0.6979          | 0         | 1.4878        | 0.3125   | 0.2391   | 0.3115 | 0.0    | 0.3115 | 0.3125    |
| No log        | 1     | 267  | 0.6298          | 0.0078    | 2.3376        | 0.6885   | 0.4078   | 0.6895 | 0.0    | 0.6885 | 0.6885    |
| No log        | 2     | 534  | 0.6256          | 0.0156    | 2.1027        | 0.6885   | 0.4078   | 0.6895 | 0.0    | 0.6885 | 0.6885    |
| No log        | 3     | 801  | 0.6220          | 0.0312    | 2.7075        | 0.6885   | 0.4078   | 0.6895 | 0.0    | 0.6885 | 0.6885    |
| No log        | 4     | 1068 | 0.6202          | 0.0625    | 3.5640        | 0.6885   | 0.4078   | 0.6895 | 0.0    | 0.6885 | 0.6885    |
| 0.0369        | 5     | 1335 | 0.6259          | 0.125     | 5.1721        | 0.6885   | 0.4078   | 0.6895 | 0.0    | 0.6885 | 0.6885    |
| 0.6135        | 6     | 1602 | 0.6199          | 0.25      | 8.1249        | 0.6885   | 0.4078   | 0.6895 | 0.0    | 0.6885 | 0.6885    |
| 0.5898        | 7     | 1869 | 0.5910          | 0.5       | 14.1801       | 0.7168   | 0.5070   | 0.7178 | 0.0    | 0.7168 | 0.7178    |
| 0.4506        | 8.0   | 2136 | 0.4844          | 1.0       | 26.1606       | 0.7939   | 0.7166   | 0.7939 | 0.0    | 0.7939 | 0.7944    |
| 0.3043        | 9.0   | 2403 | 0.5989          | 1.0       | 25.3615       | 0.7852   | 0.6916   | 0.7852 | 0.0    | 0.7861 | 0.7852    |
| 0.2686        | 10.0  | 2670 | 0.6326          | 1.0       | 25.7104       | 0.8057   | 0.7419   | 0.8057 | 0.0    | 0.8057 | 0.8057    |
| 0.1852        | 11.0  | 2937 | 0.7550          | 1.0       | 25.6559       | 0.7891   | 0.7035   | 0.7891 | 0.0    | 0.7900 | 0.7891    |
| 0.2224        | 12.0  | 3204 | 0.5325          | 1.0       | 25.4994       | 0.8115   | 0.7662   | 0.8115 | 0.0    | 0.8115 | 0.8115    |


### Framework versions

- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1