File size: 3,000 Bytes
bafd40b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
base_model: studio-ousia/luke-base-lite
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 1ccfffeacad1f0b9e6353344b490bd38
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 1ccfffeacad1f0b9e6353344b490bd38

This model is a fine-tuned version of [studio-ousia/luke-base-lite](https://huggingface.co/studio-ousia/luke-base-lite) on the dair-ai/emotion [split] dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1864
- Data Size: 1.0
- Epoch Runtime: 45.3066
- Accuracy: 0.9279
- F1 Macro: 0.8799

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|
| No log        | 0     | 0    | 1.8419          | 0         | 2.2204        | 0.0338   | 0.0128   |
| No log        | 1     | 500  | 1.6823          | 0.0078    | 2.8052        | 0.2908   | 0.0751   |
| No log        | 2     | 1000 | 1.5591          | 0.0156    | 3.1628        | 0.3488   | 0.0862   |
| No log        | 3     | 1500 | 1.1409          | 0.0312    | 3.9978        | 0.5736   | 0.2364   |
| No log        | 4     | 2000 | 0.7112          | 0.0625    | 5.6075        | 0.7601   | 0.6169   |
| 0.0506        | 5     | 2500 | 0.4577          | 0.125     | 8.4992        | 0.8387   | 0.7905   |
| 0.344         | 6     | 3000 | 0.2268          | 0.25      | 13.9797       | 0.9189   | 0.8742   |
| 0.0383        | 7     | 3500 | 0.2045          | 0.5       | 24.5039       | 0.9254   | 0.8853   |
| 0.1978        | 8.0   | 4000 | 0.1479          | 1.0       | 46.4312       | 0.9304   | 0.8919   |
| 0.1522        | 9.0   | 4500 | 0.1909          | 1.0       | 45.6419       | 0.9279   | 0.8888   |
| 0.1482        | 10.0  | 5000 | 0.2014          | 1.0       | 45.1532       | 0.9264   | 0.8917   |
| 0.1233        | 11.0  | 5500 | 0.1883          | 1.0       | 44.6967       | 0.9294   | 0.8932   |
| 0.1042        | 12.0  | 6000 | 0.1864          | 1.0       | 45.3066       | 0.9279   | 0.8799   |


### Framework versions

- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1