--- library_name: transformers license: apache-2.0 base_model: studio-ousia/mluke-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: 4be5da4a13273b95662f7a02b0747bee results: [] --- # 4be5da4a13273b95662f7a02b0747bee This model is a fine-tuned version of [studio-ousia/mluke-base](https://huggingface.co/studio-ousia/mluke-base) on the dair-ai/emotion [split] dataset. It achieves the following results on the evaluation set: - Loss: 0.2213 - Data Size: 1.0 - Epoch Runtime: 48.6894 - Accuracy: 0.9304 - F1 Macro: 0.8766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:| | No log | 0 | 0 | 1.8219 | 0 | 2.4193 | 0.0993 | 0.0601 | | No log | 1 | 500 | 1.5722 | 0.0078 | 3.1785 | 0.3589 | 0.1389 | | No log | 2 | 1000 | 1.5065 | 0.0156 | 4.0965 | 0.3503 | 0.0882 | | No log | 3 | 1500 | 1.5120 | 0.0312 | 5.9046 | 0.4612 | 0.1780 | | No log | 4 | 2000 | 1.1079 | 0.0625 | 7.0501 | 0.5842 | 0.2456 | | 0.0678 | 5 | 2500 | 0.6385 | 0.125 | 9.8105 | 0.7828 | 0.6156 | | 0.3896 | 6 | 3000 | 0.3752 | 0.25 | 15.5161 | 0.8695 | 0.8157 | | 0.0379 | 7 | 3500 | 0.2447 | 0.5 | 26.9726 | 0.9138 | 0.8684 | | 0.1801 | 8.0 | 4000 | 0.1651 | 1.0 | 49.3466 | 0.9289 | 0.8881 | | 0.1285 | 9.0 | 4500 | 0.1754 | 1.0 | 49.2456 | 0.9254 | 0.8746 | | 0.1204 | 10.0 | 5000 | 0.1674 | 1.0 | 48.8140 | 0.9340 | 0.8948 | | 0.0959 | 11.0 | 5500 | 0.1805 | 1.0 | 46.6978 | 0.9259 | 0.8884 | | 0.0903 | 12.0 | 6000 | 0.2213 | 1.0 | 48.6894 | 0.9304 | 0.8766 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1