61391e0950ec98a1b443bcf9ff78261d
This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the nyu-mll/glue [qnli] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6940
- Data Size: 1.0
- Epoch Runtime: 305.0386
- Accuracy: 0.4943
- F1 Macro: 0.3308
- Rouge1: 0.4947
- Rouge2: 0.0
- Rougel: 0.4943
- Rougelsum: 0.4944
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7108 | 0 | 4.6593 | 0.5256 | 0.4696 | 0.5256 | 0.0 | 0.5254 | 0.5254 |
| No log | 1 | 3273 | 0.6937 | 0.0078 | 7.3225 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.0116 | 2 | 6546 | 0.7210 | 0.0156 | 10.6195 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.716 | 3 | 9819 | 0.6947 | 0.0312 | 14.6452 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.7059 | 4 | 13092 | 0.6925 | 0.0625 | 24.8280 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.7018 | 5 | 16365 | 0.6936 | 0.125 | 43.4456 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.7079 | 6 | 19638 | 0.6965 | 0.25 | 80.4857 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.6987 | 7 | 22911 | 0.7070 | 0.5 | 154.0918 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.6965 | 8.0 | 26184 | 0.6940 | 1.0 | 305.0386 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 12