--- library_name: transformers license: apache-2.0 base_model: studio-ousia/luke-japanese-base-lite tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 64fbf67a176c46df0867fd922551d1cd results: [] --- # 64fbf67a176c46df0867fd922551d1cd This model is a fine-tuned version of [studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite) on the nyu-mll/glue [qnli] dataset. It achieves the following results on the evaluation set: - Loss: 0.6947 - Data Size: 1.0 - Epoch Runtime: 285.4853 - Accuracy: 0.5057 - F1 Macro: 0.3359 - Rouge1: 0.5053 - Rouge2: 0.0 - Rougel: 0.5057 - Rougelsum: 0.5056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 0.7348 | 0 | 5.1493 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 | | No log | 1 | 3273 | 0.6081 | 0.0078 | 8.7462 | 0.6680 | 0.6445 | 0.6680 | 0.0 | 0.6682 | 0.6678 | | 0.0102 | 2 | 6546 | 0.5758 | 0.0156 | 9.7289 | 0.7256 | 0.7103 | 0.7256 | 0.0 | 0.725 | 0.7254 | | 0.5972 | 3 | 9819 | 0.4786 | 0.0312 | 14.8877 | 0.7776 | 0.7773 | 0.7776 | 0.0 | 0.7774 | 0.7774 | | 0.5346 | 4 | 13092 | 0.5234 | 0.0625 | 23.5677 | 0.7482 | 0.7451 | 0.7483 | 0.0 | 0.7482 | 0.7481 | | 0.5016 | 5 | 16365 | 0.4684 | 0.125 | 40.0043 | 0.7871 | 0.7869 | 0.7869 | 0.0 | 0.7871 | 0.7873 | | 0.5366 | 6 | 19638 | 0.5159 | 0.25 | 77.4840 | 0.7384 | 0.7294 | 0.7384 | 0.0 | 0.7388 | 0.7384 | | 0.5204 | 7 | 22911 | 0.5355 | 0.5 | 143.7341 | 0.7472 | 0.7413 | 0.7473 | 0.0 | 0.7471 | 0.7478 | | 0.5771 | 8.0 | 26184 | 0.5010 | 1.0 | 283.8218 | 0.7888 | 0.7881 | 0.7888 | 0.0 | 0.7886 | 0.7885 | | 0.6953 | 9.0 | 29457 | 0.6947 | 1.0 | 285.4853 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1