--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: 66042c5d15c72970aacdd01c08465813 results: [] --- # 66042c5d15c72970aacdd01c08465813 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the nyu-mll/glue [stsb] dataset. It achieves the following results on the evaluation set: - Loss: 0.6360 - Data Size: 1.0 - Epoch Runtime: 10.9811 - Mse: 0.6361 - Mae: 0.6071 - R2: 0.7154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:------:|:------:|:-------:| | No log | 0 | 0 | 7.2959 | 0 | 1.2205 | 7.2971 | 2.2707 | -2.2643 | | No log | 1 | 179 | 3.8976 | 0.0078 | 1.5296 | 3.8987 | 1.6467 | -0.7440 | | No log | 2 | 358 | 2.2853 | 0.0156 | 1.6104 | 2.2860 | 1.2819 | -0.0226 | | No log | 3 | 537 | 2.5867 | 0.0312 | 2.0079 | 2.5877 | 1.3672 | -0.1576 | | No log | 4 | 716 | 2.1014 | 0.0625 | 2.3998 | 2.1022 | 1.2436 | 0.0596 | | No log | 5 | 895 | 0.8921 | 0.125 | 2.9282 | 0.8926 | 0.7631 | 0.6007 | | 0.1315 | 6 | 1074 | 0.7837 | 0.25 | 4.1671 | 0.7842 | 0.6791 | 0.6492 | | 0.7823 | 7 | 1253 | 0.7277 | 0.5 | 6.5455 | 0.7283 | 0.6781 | 0.6742 | | 0.6355 | 8.0 | 1432 | 0.6166 | 1.0 | 11.2578 | 0.6170 | 0.6052 | 0.7240 | | 0.3982 | 9.0 | 1611 | 0.6060 | 1.0 | 11.2043 | 0.6064 | 0.5842 | 0.7287 | | 0.2705 | 10.0 | 1790 | 0.6099 | 1.0 | 11.5508 | 0.6101 | 0.6025 | 0.7271 | | 0.2075 | 11.0 | 1969 | 0.5823 | 1.0 | 11.2443 | 0.5828 | 0.5789 | 0.7393 | | 0.1817 | 12.0 | 2148 | 0.6110 | 1.0 | 10.8460 | 0.6114 | 0.5984 | 0.7265 | | 0.1452 | 13.0 | 2327 | 0.5857 | 1.0 | 10.9459 | 0.5860 | 0.5731 | 0.7379 | | 0.128 | 14.0 | 2506 | 0.5893 | 1.0 | 10.9863 | 0.5895 | 0.5831 | 0.7363 | | 0.1102 | 15.0 | 2685 | 0.6360 | 1.0 | 10.9811 | 0.6361 | 0.6071 | 0.7154 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1