--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 7f46eeb9fff60eed8b49f05e77ab5d1d results: [] --- # 7f46eeb9fff60eed8b49f05e77ab5d1d This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set: - Loss: 0.6347 - Data Size: 1.0 - Epoch Runtime: 616.6585 - Accuracy: 0.7639 - F1 Macro: 0.7624 - Rouge1: 0.7638 - Rouge2: 0.0 - Rougel: 0.7639 - Rougelsum: 0.7642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 1.1021 | 0 | 4.8366 | 0.3333 | 0.2588 | 0.3333 | 0.0 | 0.3333 | 0.3332 | | 1.056 | 1 | 12271 | 0.9014 | 0.0078 | 9.7280 | 0.5923 | 0.5927 | 0.5924 | 0.0 | 0.5925 | 0.5928 | | 0.8885 | 2 | 24542 | 0.8165 | 0.0156 | 15.4293 | 0.6421 | 0.6365 | 0.6422 | 0.0 | 0.6425 | 0.6423 | | 0.8231 | 3 | 36813 | 0.7632 | 0.0312 | 24.1737 | 0.6675 | 0.6626 | 0.6675 | 0.0 | 0.6675 | 0.6675 | | 0.7834 | 4 | 49084 | 0.7125 | 0.0625 | 43.9368 | 0.6962 | 0.6953 | 0.6964 | 0.0 | 0.6962 | 0.6965 | | 0.6754 | 5 | 61355 | 0.6893 | 0.125 | 82.9030 | 0.7145 | 0.7108 | 0.7144 | 0.0 | 0.7144 | 0.7148 | | 0.6879 | 6 | 73626 | 0.6884 | 0.25 | 161.7223 | 0.7211 | 0.7215 | 0.7214 | 0.0 | 0.7212 | 0.7210 | | 0.5822 | 7 | 85897 | 0.6155 | 0.5 | 318.7635 | 0.7488 | 0.7480 | 0.7486 | 0.0 | 0.7487 | 0.7489 | | 0.575 | 8.0 | 98168 | 0.5989 | 1.0 | 631.4860 | 0.7701 | 0.7691 | 0.7699 | 0.0 | 0.7701 | 0.7701 | | 0.4987 | 9.0 | 110439 | 0.6014 | 1.0 | 619.4724 | 0.7711 | 0.7704 | 0.7711 | 0.0 | 0.7712 | 0.7711 | | 0.4853 | 10.0 | 122710 | 0.5948 | 1.0 | 612.5831 | 0.7719 | 0.7704 | 0.7720 | 0.0 | 0.7719 | 0.7720 | | 0.4152 | 11.0 | 134981 | 0.6218 | 1.0 | 614.1248 | 0.7623 | 0.7630 | 0.7623 | 0.0 | 0.7624 | 0.7623 | | 0.4063 | 12.0 | 147252 | 0.6741 | 1.0 | 614.9903 | 0.7557 | 0.7546 | 0.7555 | 0.0 | 0.7558 | 0.7559 | | 0.4303 | 13.0 | 159523 | 0.7124 | 1.0 | 617.9320 | 0.7563 | 0.7572 | 0.7562 | 0.0 | 0.7566 | 0.7564 | | 0.3838 | 14.0 | 171794 | 0.6347 | 1.0 | 616.6585 | 0.7639 | 0.7624 | 0.7638 | 0.0 | 0.7639 | 0.7642 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1