--- library_name: transformers license: apache-2.0 base_model: studio-ousia/luke-japanese-base-lite tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: adf30ff46484ae174f499deadd84ad2a results: [] --- # adf30ff46484ae174f499deadd84ad2a This model is a fine-tuned version of [studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite) on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set: - Loss: 0.6206 - Data Size: 1.0 - Epoch Runtime: 24.4961 - Accuracy: 0.6885 - F1 Macro: 0.4078 - Rouge1: 0.6895 - Rouge2: 0.0 - Rougel: 0.6885 - Rougelsum: 0.6885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 0.8334 | 0 | 1.3810 | 0.3115 | 0.2375 | 0.3105 | 0.0 | 0.3115 | 0.3115 | | No log | 1 | 267 | 0.6707 | 0.0078 | 2.0702 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | No log | 2 | 534 | 0.6679 | 0.0156 | 2.0008 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | No log | 3 | 801 | 0.6399 | 0.0312 | 2.5999 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | No log | 4 | 1068 | 0.6386 | 0.0625 | 3.3997 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.037 | 5 | 1335 | 0.6324 | 0.125 | 4.9205 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.61 | 6 | 1602 | 0.6276 | 0.25 | 7.8792 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6173 | 7 | 1869 | 0.6444 | 0.5 | 13.9109 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6024 | 8.0 | 2136 | 0.6224 | 1.0 | 25.6404 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6082 | 9.0 | 2403 | 0.6433 | 1.0 | 24.8289 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6145 | 10.0 | 2670 | 0.6193 | 1.0 | 25.1369 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6197 | 11.0 | 2937 | 0.6214 | 1.0 | 24.2461 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6238 | 12.0 | 3204 | 0.6214 | 1.0 | 24.3247 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6128 | 13.0 | 3471 | 0.6220 | 1.0 | 24.5419 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.6246 | 14.0 | 3738 | 0.6206 | 1.0 | 24.4961 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1