c8a3c5dcba70ded6236fbc73a23cab85
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the contemmcm/clickbait dataset. It achieves the following results on the evaluation set:
- Loss: 0.0085
- Data Size: 1.0
- Epoch Runtime: 37.5293
- Accuracy: 0.9988
- F1 Macro: 0.9988
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6888 | 0 | 3.1410 | 0.5893 | 0.4811 |
| No log | 1 | 650 | 0.0670 | 0.0078 | 3.6137 | 0.9905 | 0.9900 |
| No log | 2 | 1300 | 0.0158 | 0.0156 | 4.1024 | 0.9969 | 0.9967 |
| No log | 3 | 1950 | 0.0088 | 0.0312 | 4.8092 | 0.9985 | 0.9984 |
| No log | 4 | 2600 | 0.0073 | 0.0625 | 5.8267 | 0.9985 | 0.9984 |
| 0.0019 | 5 | 3250 | 0.0049 | 0.125 | 8.1497 | 0.9988 | 0.9988 |
| 0.0004 | 6 | 3900 | 0.0051 | 0.25 | 12.5464 | 0.9988 | 0.9988 |
| 0.0089 | 7 | 4550 | 0.0130 | 0.5 | 21.4665 | 0.9983 | 0.9982 |
| 0.0054 | 8.0 | 5200 | 0.0119 | 1.0 | 40.3707 | 0.9985 | 0.9984 |
| 0.0096 | 9.0 | 5850 | 0.0085 | 1.0 | 37.5293 | 0.9988 | 0.9988 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 9
Model tree for contemmcm/c8a3c5dcba70ded6236fbc73a23cab85
Base model
google-bert/bert-base-multilingual-cased