--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: cc522f2f2219b6467260677999c26a6b results: [] --- # cc522f2f2219b6467260677999c26a6b This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the nyu-mll/glue [qqp] dataset. It achieves the following results on the evaluation set: - Loss: 0.8585 - Data Size: 0.25 - Epoch Runtime: 445.1982 - Accuracy: 0.3680 - F1 Macro: 0.2690 - Rouge1: 0.3682 - Rouge2: 0.0 - Rougel: 0.3681 - Rougelsum: 0.3683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 0.6540 | 0 | 52.7420 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 | | 0.6451 | 1 | 11370 | 0.5819 | 0.0078 | 66.7814 | 0.7987 | 0.7821 | 0.7988 | 0.0 | 0.7987 | 0.7987 | | 0.5842 | 2 | 22740 | 0.5633 | 0.0156 | 78.9004 | 0.7674 | 0.7504 | 0.7674 | 0.0 | 0.7674 | 0.7673 | | 0.6603 | 3 | 34110 | 0.6254 | 0.0312 | 103.6159 | 0.6527 | 0.6307 | 0.6527 | 0.0 | 0.6527 | 0.6526 | | 0.6767 | 4 | 45480 | 0.6581 | 0.0625 | 151.4573 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 | | 0.6693 | 5 | 56850 | 0.6608 | 0.125 | 250.6893 | 0.6320 | 0.3872 | 0.6318 | 0.0 | 0.6319 | 0.6317 | | 0.6585 | 6 | 68220 | 0.8585 | 0.25 | 445.1982 | 0.3680 | 0.2690 | 0.3682 | 0.0 | 0.3681 | 0.3683 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1