--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: f0e34afffe85e814b4e41abc80263fca results: [] --- # f0e34afffe85e814b4e41abc80263fca This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set: - Loss: 0.3189 - Data Size: 1.0 - Epoch Runtime: 49.4083 - Accuracy: 0.9115 - F1 Macro: 0.7587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:| | No log | 0 | 0 | 1.2039 | 0 | 4.1789 | 0.0601 | 0.0378 | | No log | 1 | 619 | 0.6824 | 0.0078 | 4.7944 | 0.7672 | 0.2894 | | No log | 2 | 1238 | 0.6033 | 0.0156 | 5.1378 | 0.7672 | 0.2894 | | 0.0148 | 3 | 1857 | 0.3472 | 0.0312 | 5.9556 | 0.8904 | 0.5871 | | 0.0148 | 4 | 2476 | 0.2996 | 0.0625 | 7.7942 | 0.9046 | 0.6062 | | 0.3137 | 5 | 3095 | 0.2770 | 0.125 | 10.1123 | 0.9065 | 0.7305 | | 0.0257 | 6 | 3714 | 0.2918 | 0.25 | 15.7152 | 0.9054 | 0.6093 | | 0.2836 | 7 | 4333 | 0.3122 | 0.5 | 27.3986 | 0.8981 | 0.7566 | | 0.2616 | 8.0 | 4952 | 0.2436 | 1.0 | 50.3288 | 0.9164 | 0.6985 | | 0.2095 | 9.0 | 5571 | 0.3629 | 1.0 | 49.8399 | 0.8843 | 0.6892 | | 0.2033 | 10.0 | 6190 | 0.2972 | 1.0 | 49.5511 | 0.9150 | 0.7817 | | 0.2164 | 11.0 | 6809 | 0.2992 | 1.0 | 50.8395 | 0.9093 | 0.7611 | | 0.1258 | 12.0 | 7428 | 0.3189 | 1.0 | 49.4083 | 0.9115 | 0.7587 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1