--- library_name: transformers license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall model-index: - name: lifechart-clinicalbert-classifier-hptuning results: [] --- # lifechart-clinicalbert-classifier-hptuning This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9974 - Macro F1: 0.7643 - Precision: 0.7646 - Recall: 0.7719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.388107847663499e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12710648271608968 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:| | 1.9942 | 1.0 | 1641 | 0.9834 | 0.7390 | 0.7307 | 0.7689 | | 0.7735 | 2.0 | 3282 | 0.9188 | 0.7621 | 0.7545 | 0.7791 | | 0.4206 | 3.0 | 4923 | 0.9974 | 0.7643 | 0.7646 | 0.7719 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4