cs2764's picture
Upload MLX converted model with quantization settings
766c725 verified
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
tags:
- mlx
---
# cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32
The Model [cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32](https://huggingface.co/cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32) was converted to MLX format from [Qwen/Qwen3-30B-A3B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507) using mlx-lm version **0.26.2**.
## Quantization Details
This model was converted with the following quantization settings:
- **Quantization Strategy**: 4-bit quantization
- **Group Size**: 32
- **Average bits per weight**: 5.000
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```