Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- README.md +202 -0
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +24 -0
- latest +1 -0
- merges.txt +0 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- trainer_state.json +3549 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-Math-7B-Instruct
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.12.0
|
adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-Math-7B-Instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 16,
|
| 14 |
+
"lora_dropout": 0.0,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 8,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"down_proj",
|
| 24 |
+
"q_proj",
|
| 25 |
+
"k_proj",
|
| 26 |
+
"o_proj",
|
| 27 |
+
"v_proj",
|
| 28 |
+
"gate_proj",
|
| 29 |
+
"up_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2648d0a03ac3c7979ad26a18475e78e1c7942180ff7c76ef856f2b28ba8fd2b2
|
| 3 |
+
size 40422208
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step500
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
|
| 3 |
+
size 15024
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
|
| 3 |
+
size 15024
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
|
| 3 |
+
size 15024
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
|
| 3 |
+
size 15024
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba21c9d2d086a96e35eaefbaf5f20c74cbba4792742079d64e7ddb91a4625f1b
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,3549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.7496251874062968,
|
| 5 |
+
"eval_steps": 200,
|
| 6 |
+
"global_step": 500,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0014992503748125937,
|
| 13 |
+
"grad_norm": 0.6480459224054971,
|
| 14 |
+
"learning_rate": 1.639344262295082e-06,
|
| 15 |
+
"loss": 1.2634,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.0029985007496251873,
|
| 20 |
+
"grad_norm": 1.002261491564362,
|
| 21 |
+
"learning_rate": 3.278688524590164e-06,
|
| 22 |
+
"loss": 1.7059,
|
| 23 |
+
"step": 2
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.004497751124437781,
|
| 27 |
+
"grad_norm": 0.6235845014164785,
|
| 28 |
+
"learning_rate": 4.918032786885246e-06,
|
| 29 |
+
"loss": 1.2018,
|
| 30 |
+
"step": 3
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.005997001499250375,
|
| 34 |
+
"grad_norm": 0.7696945325835381,
|
| 35 |
+
"learning_rate": 6.557377049180328e-06,
|
| 36 |
+
"loss": 1.5389,
|
| 37 |
+
"step": 4
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.0074962518740629685,
|
| 41 |
+
"grad_norm": 0.7725389217188828,
|
| 42 |
+
"learning_rate": 8.196721311475409e-06,
|
| 43 |
+
"loss": 1.3489,
|
| 44 |
+
"step": 5
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.008995502248875561,
|
| 48 |
+
"grad_norm": 1.023311996781376,
|
| 49 |
+
"learning_rate": 9.836065573770493e-06,
|
| 50 |
+
"loss": 1.9915,
|
| 51 |
+
"step": 6
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.010494752623688156,
|
| 55 |
+
"grad_norm": 0.7234320068186162,
|
| 56 |
+
"learning_rate": 1.1475409836065575e-05,
|
| 57 |
+
"loss": 1.4321,
|
| 58 |
+
"step": 7
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.01199400299850075,
|
| 62 |
+
"grad_norm": 0.8106320449229776,
|
| 63 |
+
"learning_rate": 1.3114754098360657e-05,
|
| 64 |
+
"loss": 1.6013,
|
| 65 |
+
"step": 8
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.013493253373313344,
|
| 69 |
+
"grad_norm": 0.6614103055476157,
|
| 70 |
+
"learning_rate": 1.4754098360655739e-05,
|
| 71 |
+
"loss": 1.2124,
|
| 72 |
+
"step": 9
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.014992503748125937,
|
| 76 |
+
"grad_norm": 1.177719371372819,
|
| 77 |
+
"learning_rate": 1.6393442622950818e-05,
|
| 78 |
+
"loss": 1.8517,
|
| 79 |
+
"step": 10
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.01649175412293853,
|
| 83 |
+
"grad_norm": 0.8848406229059239,
|
| 84 |
+
"learning_rate": 1.8032786885245903e-05,
|
| 85 |
+
"loss": 1.5112,
|
| 86 |
+
"step": 11
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.017991004497751123,
|
| 90 |
+
"grad_norm": 0.9014496173514771,
|
| 91 |
+
"learning_rate": 1.9672131147540985e-05,
|
| 92 |
+
"loss": 1.535,
|
| 93 |
+
"step": 12
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.019490254872563718,
|
| 97 |
+
"grad_norm": 0.7836410412317578,
|
| 98 |
+
"learning_rate": 2.1311475409836064e-05,
|
| 99 |
+
"loss": 1.1882,
|
| 100 |
+
"step": 13
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.020989505247376312,
|
| 104 |
+
"grad_norm": 1.0481927081240034,
|
| 105 |
+
"learning_rate": 2.295081967213115e-05,
|
| 106 |
+
"loss": 1.519,
|
| 107 |
+
"step": 14
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.022488755622188907,
|
| 111 |
+
"grad_norm": 0.8252752830517661,
|
| 112 |
+
"learning_rate": 2.459016393442623e-05,
|
| 113 |
+
"loss": 1.2829,
|
| 114 |
+
"step": 15
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.0239880059970015,
|
| 118 |
+
"grad_norm": 1.4337440260538479,
|
| 119 |
+
"learning_rate": 2.6229508196721314e-05,
|
| 120 |
+
"loss": 1.8454,
|
| 121 |
+
"step": 16
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.025487256371814093,
|
| 125 |
+
"grad_norm": 1.1085278892757038,
|
| 126 |
+
"learning_rate": 2.7868852459016392e-05,
|
| 127 |
+
"loss": 1.4827,
|
| 128 |
+
"step": 17
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.026986506746626688,
|
| 132 |
+
"grad_norm": 0.9726032316099864,
|
| 133 |
+
"learning_rate": 2.9508196721311478e-05,
|
| 134 |
+
"loss": 1.3396,
|
| 135 |
+
"step": 18
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.02848575712143928,
|
| 139 |
+
"grad_norm": 1.134745439965142,
|
| 140 |
+
"learning_rate": 3.114754098360656e-05,
|
| 141 |
+
"loss": 1.3275,
|
| 142 |
+
"step": 19
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.029985007496251874,
|
| 146 |
+
"grad_norm": 1.3783626004268938,
|
| 147 |
+
"learning_rate": 3.2786885245901635e-05,
|
| 148 |
+
"loss": 1.4666,
|
| 149 |
+
"step": 20
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.031484257871064465,
|
| 153 |
+
"grad_norm": 1.42842588053584,
|
| 154 |
+
"learning_rate": 3.442622950819672e-05,
|
| 155 |
+
"loss": 1.4528,
|
| 156 |
+
"step": 21
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.03298350824587706,
|
| 160 |
+
"grad_norm": 1.5295744375884153,
|
| 161 |
+
"learning_rate": 3.6065573770491806e-05,
|
| 162 |
+
"loss": 1.3789,
|
| 163 |
+
"step": 22
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.034482758620689655,
|
| 167 |
+
"grad_norm": 1.3262347118296849,
|
| 168 |
+
"learning_rate": 3.7704918032786885e-05,
|
| 169 |
+
"loss": 1.29,
|
| 170 |
+
"step": 23
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.035982008995502246,
|
| 174 |
+
"grad_norm": 0.9094034688552372,
|
| 175 |
+
"learning_rate": 3.934426229508197e-05,
|
| 176 |
+
"loss": 1.0371,
|
| 177 |
+
"step": 24
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.037481259370314844,
|
| 181 |
+
"grad_norm": 1.1737967227100512,
|
| 182 |
+
"learning_rate": 4.098360655737705e-05,
|
| 183 |
+
"loss": 1.1038,
|
| 184 |
+
"step": 25
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.038980509745127435,
|
| 188 |
+
"grad_norm": 1.056641879506561,
|
| 189 |
+
"learning_rate": 4.262295081967213e-05,
|
| 190 |
+
"loss": 0.9753,
|
| 191 |
+
"step": 26
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.04047976011994003,
|
| 195 |
+
"grad_norm": 0.7823073229632485,
|
| 196 |
+
"learning_rate": 4.426229508196721e-05,
|
| 197 |
+
"loss": 1.0282,
|
| 198 |
+
"step": 27
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.041979010494752625,
|
| 202 |
+
"grad_norm": 0.44538213854923814,
|
| 203 |
+
"learning_rate": 4.59016393442623e-05,
|
| 204 |
+
"loss": 0.7663,
|
| 205 |
+
"step": 28
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.043478260869565216,
|
| 209 |
+
"grad_norm": 0.4381462092753938,
|
| 210 |
+
"learning_rate": 4.754098360655738e-05,
|
| 211 |
+
"loss": 0.7985,
|
| 212 |
+
"step": 29
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.044977511244377814,
|
| 216 |
+
"grad_norm": 0.4039939547366716,
|
| 217 |
+
"learning_rate": 4.918032786885246e-05,
|
| 218 |
+
"loss": 0.7191,
|
| 219 |
+
"step": 30
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.046476761619190406,
|
| 223 |
+
"grad_norm": 0.31255508798384235,
|
| 224 |
+
"learning_rate": 5.081967213114754e-05,
|
| 225 |
+
"loss": 0.7129,
|
| 226 |
+
"step": 31
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.047976011994003,
|
| 230 |
+
"grad_norm": 0.36801599741523594,
|
| 231 |
+
"learning_rate": 5.245901639344263e-05,
|
| 232 |
+
"loss": 0.8943,
|
| 233 |
+
"step": 32
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.049475262368815595,
|
| 237 |
+
"grad_norm": 0.23995271490026998,
|
| 238 |
+
"learning_rate": 5.409836065573771e-05,
|
| 239 |
+
"loss": 0.6516,
|
| 240 |
+
"step": 33
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.050974512743628186,
|
| 244 |
+
"grad_norm": 0.31423520475526784,
|
| 245 |
+
"learning_rate": 5.5737704918032785e-05,
|
| 246 |
+
"loss": 0.6279,
|
| 247 |
+
"step": 34
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.05247376311844078,
|
| 251 |
+
"grad_norm": 0.2790356075550021,
|
| 252 |
+
"learning_rate": 5.737704918032787e-05,
|
| 253 |
+
"loss": 0.7248,
|
| 254 |
+
"step": 35
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.053973013493253376,
|
| 258 |
+
"grad_norm": 0.17988842758193976,
|
| 259 |
+
"learning_rate": 5.9016393442622956e-05,
|
| 260 |
+
"loss": 0.6779,
|
| 261 |
+
"step": 36
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.05547226386806597,
|
| 265 |
+
"grad_norm": 0.1935776869878135,
|
| 266 |
+
"learning_rate": 6.0655737704918034e-05,
|
| 267 |
+
"loss": 0.7249,
|
| 268 |
+
"step": 37
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.05697151424287856,
|
| 272 |
+
"grad_norm": 0.20577959928691567,
|
| 273 |
+
"learning_rate": 6.229508196721313e-05,
|
| 274 |
+
"loss": 0.7901,
|
| 275 |
+
"step": 38
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.05847076461769116,
|
| 279 |
+
"grad_norm": 0.1920317677722405,
|
| 280 |
+
"learning_rate": 6.39344262295082e-05,
|
| 281 |
+
"loss": 0.7587,
|
| 282 |
+
"step": 39
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.05997001499250375,
|
| 286 |
+
"grad_norm": 0.19588448674722603,
|
| 287 |
+
"learning_rate": 6.557377049180327e-05,
|
| 288 |
+
"loss": 0.6527,
|
| 289 |
+
"step": 40
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.06146926536731634,
|
| 293 |
+
"grad_norm": 0.19117240884440398,
|
| 294 |
+
"learning_rate": 6.721311475409836e-05,
|
| 295 |
+
"loss": 0.7422,
|
| 296 |
+
"step": 41
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.06296851574212893,
|
| 300 |
+
"grad_norm": 0.2126112343873058,
|
| 301 |
+
"learning_rate": 6.885245901639344e-05,
|
| 302 |
+
"loss": 0.6567,
|
| 303 |
+
"step": 42
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.06446776611694154,
|
| 307 |
+
"grad_norm": 0.1867157531444841,
|
| 308 |
+
"learning_rate": 7.049180327868853e-05,
|
| 309 |
+
"loss": 0.6655,
|
| 310 |
+
"step": 43
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.06596701649175413,
|
| 314 |
+
"grad_norm": 0.1766702070625266,
|
| 315 |
+
"learning_rate": 7.213114754098361e-05,
|
| 316 |
+
"loss": 0.6048,
|
| 317 |
+
"step": 44
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.06746626686656672,
|
| 321 |
+
"grad_norm": 0.21635503382268856,
|
| 322 |
+
"learning_rate": 7.377049180327869e-05,
|
| 323 |
+
"loss": 0.7181,
|
| 324 |
+
"step": 45
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.06896551724137931,
|
| 328 |
+
"grad_norm": 0.22720549019270686,
|
| 329 |
+
"learning_rate": 7.540983606557377e-05,
|
| 330 |
+
"loss": 0.7293,
|
| 331 |
+
"step": 46
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.0704647676161919,
|
| 335 |
+
"grad_norm": 0.20178392044030222,
|
| 336 |
+
"learning_rate": 7.704918032786885e-05,
|
| 337 |
+
"loss": 0.6708,
|
| 338 |
+
"step": 47
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.07196401799100449,
|
| 342 |
+
"grad_norm": 0.1866069924894252,
|
| 343 |
+
"learning_rate": 7.868852459016394e-05,
|
| 344 |
+
"loss": 0.569,
|
| 345 |
+
"step": 48
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.0734632683658171,
|
| 349 |
+
"grad_norm": 0.20423207217060818,
|
| 350 |
+
"learning_rate": 8.032786885245902e-05,
|
| 351 |
+
"loss": 0.6823,
|
| 352 |
+
"step": 49
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.07496251874062969,
|
| 356 |
+
"grad_norm": 0.27146563006319185,
|
| 357 |
+
"learning_rate": 8.19672131147541e-05,
|
| 358 |
+
"loss": 0.765,
|
| 359 |
+
"step": 50
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.07646176911544228,
|
| 363 |
+
"grad_norm": 0.18688552348259718,
|
| 364 |
+
"learning_rate": 8.360655737704919e-05,
|
| 365 |
+
"loss": 0.6836,
|
| 366 |
+
"step": 51
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.07796101949025487,
|
| 370 |
+
"grad_norm": 0.208689035179473,
|
| 371 |
+
"learning_rate": 8.524590163934426e-05,
|
| 372 |
+
"loss": 0.6735,
|
| 373 |
+
"step": 52
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.07946026986506746,
|
| 377 |
+
"grad_norm": 0.17717804777290422,
|
| 378 |
+
"learning_rate": 8.688524590163935e-05,
|
| 379 |
+
"loss": 0.657,
|
| 380 |
+
"step": 53
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.08095952023988005,
|
| 384 |
+
"grad_norm": 0.14649881728810155,
|
| 385 |
+
"learning_rate": 8.852459016393443e-05,
|
| 386 |
+
"loss": 0.5488,
|
| 387 |
+
"step": 54
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.08245877061469266,
|
| 391 |
+
"grad_norm": 0.190417488803657,
|
| 392 |
+
"learning_rate": 9.016393442622952e-05,
|
| 393 |
+
"loss": 0.6301,
|
| 394 |
+
"step": 55
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.08395802098950525,
|
| 398 |
+
"grad_norm": 0.1698375240514099,
|
| 399 |
+
"learning_rate": 9.18032786885246e-05,
|
| 400 |
+
"loss": 0.6596,
|
| 401 |
+
"step": 56
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.08545727136431784,
|
| 405 |
+
"grad_norm": 0.1962769006488063,
|
| 406 |
+
"learning_rate": 9.344262295081968e-05,
|
| 407 |
+
"loss": 0.6707,
|
| 408 |
+
"step": 57
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.08695652173913043,
|
| 412 |
+
"grad_norm": 0.175718028167132,
|
| 413 |
+
"learning_rate": 9.508196721311476e-05,
|
| 414 |
+
"loss": 0.6894,
|
| 415 |
+
"step": 58
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.08845577211394302,
|
| 419 |
+
"grad_norm": 0.14251257889523739,
|
| 420 |
+
"learning_rate": 9.672131147540983e-05,
|
| 421 |
+
"loss": 0.4608,
|
| 422 |
+
"step": 59
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.08995502248875563,
|
| 426 |
+
"grad_norm": 0.1546737314752146,
|
| 427 |
+
"learning_rate": 9.836065573770493e-05,
|
| 428 |
+
"loss": 0.5651,
|
| 429 |
+
"step": 60
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.09145427286356822,
|
| 433 |
+
"grad_norm": 0.16119270097083238,
|
| 434 |
+
"learning_rate": 0.0001,
|
| 435 |
+
"loss": 0.5859,
|
| 436 |
+
"step": 61
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.09295352323838081,
|
| 440 |
+
"grad_norm": 0.17202976487555255,
|
| 441 |
+
"learning_rate": 9.999993444041447e-05,
|
| 442 |
+
"loss": 0.6663,
|
| 443 |
+
"step": 62
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.0944527736131934,
|
| 447 |
+
"grad_norm": 0.1744041549987411,
|
| 448 |
+
"learning_rate": 9.999973776182981e-05,
|
| 449 |
+
"loss": 0.5656,
|
| 450 |
+
"step": 63
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.095952023988006,
|
| 454 |
+
"grad_norm": 0.19578738914968555,
|
| 455 |
+
"learning_rate": 9.999940996476175e-05,
|
| 456 |
+
"loss": 0.6668,
|
| 457 |
+
"step": 64
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.09745127436281859,
|
| 461 |
+
"grad_norm": 0.13866011716797835,
|
| 462 |
+
"learning_rate": 9.999895105006994e-05,
|
| 463 |
+
"loss": 0.4206,
|
| 464 |
+
"step": 65
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.09895052473763119,
|
| 468 |
+
"grad_norm": 0.17606665683631137,
|
| 469 |
+
"learning_rate": 9.999836101895783e-05,
|
| 470 |
+
"loss": 0.608,
|
| 471 |
+
"step": 66
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.10044977511244378,
|
| 475 |
+
"grad_norm": 0.11399753463035138,
|
| 476 |
+
"learning_rate": 9.999763987297265e-05,
|
| 477 |
+
"loss": 0.4107,
|
| 478 |
+
"step": 67
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.10194902548725637,
|
| 482 |
+
"grad_norm": 0.1643566923671948,
|
| 483 |
+
"learning_rate": 9.999678761400561e-05,
|
| 484 |
+
"loss": 0.545,
|
| 485 |
+
"step": 68
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.10344827586206896,
|
| 489 |
+
"grad_norm": 0.15684085393275743,
|
| 490 |
+
"learning_rate": 9.99958042442916e-05,
|
| 491 |
+
"loss": 0.5278,
|
| 492 |
+
"step": 69
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.10494752623688156,
|
| 496 |
+
"grad_norm": 0.1779073694133138,
|
| 497 |
+
"learning_rate": 9.99946897664094e-05,
|
| 498 |
+
"loss": 0.5174,
|
| 499 |
+
"step": 70
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.10644677661169415,
|
| 503 |
+
"grad_norm": 0.12935127762781468,
|
| 504 |
+
"learning_rate": 9.999344418328162e-05,
|
| 505 |
+
"loss": 0.43,
|
| 506 |
+
"step": 71
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.10794602698650675,
|
| 510 |
+
"grad_norm": 0.2110979324649629,
|
| 511 |
+
"learning_rate": 9.999206749817463e-05,
|
| 512 |
+
"loss": 0.6861,
|
| 513 |
+
"step": 72
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.10944527736131934,
|
| 517 |
+
"grad_norm": 0.1936555889752225,
|
| 518 |
+
"learning_rate": 9.999055971469864e-05,
|
| 519 |
+
"loss": 0.5476,
|
| 520 |
+
"step": 73
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.11094452773613193,
|
| 524 |
+
"grad_norm": 0.20701659334369552,
|
| 525 |
+
"learning_rate": 9.998892083680764e-05,
|
| 526 |
+
"loss": 0.6848,
|
| 527 |
+
"step": 74
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.11244377811094453,
|
| 531 |
+
"grad_norm": 0.16610817248915638,
|
| 532 |
+
"learning_rate": 9.998715086879938e-05,
|
| 533 |
+
"loss": 0.5305,
|
| 534 |
+
"step": 75
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.11394302848575712,
|
| 538 |
+
"grad_norm": 0.17520351205683088,
|
| 539 |
+
"learning_rate": 9.99852498153154e-05,
|
| 540 |
+
"loss": 0.517,
|
| 541 |
+
"step": 76
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.11544227886056972,
|
| 545 |
+
"grad_norm": 0.1333804777211274,
|
| 546 |
+
"learning_rate": 9.998321768134102e-05,
|
| 547 |
+
"loss": 0.4761,
|
| 548 |
+
"step": 77
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.11694152923538231,
|
| 552 |
+
"grad_norm": 0.17827128088875116,
|
| 553 |
+
"learning_rate": 9.998105447220523e-05,
|
| 554 |
+
"loss": 0.4646,
|
| 555 |
+
"step": 78
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.1184407796101949,
|
| 559 |
+
"grad_norm": 0.1898191486639819,
|
| 560 |
+
"learning_rate": 9.997876019358084e-05,
|
| 561 |
+
"loss": 0.6011,
|
| 562 |
+
"step": 79
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.1199400299850075,
|
| 566 |
+
"grad_norm": 0.16388344609996736,
|
| 567 |
+
"learning_rate": 9.997633485148427e-05,
|
| 568 |
+
"loss": 0.4767,
|
| 569 |
+
"step": 80
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.12143928035982009,
|
| 573 |
+
"grad_norm": 0.15961092951225977,
|
| 574 |
+
"learning_rate": 9.997377845227576e-05,
|
| 575 |
+
"loss": 0.4282,
|
| 576 |
+
"step": 81
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.12293853073463268,
|
| 580 |
+
"grad_norm": 0.1751526879417404,
|
| 581 |
+
"learning_rate": 9.997109100265911e-05,
|
| 582 |
+
"loss": 0.5367,
|
| 583 |
+
"step": 82
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.12443778110944528,
|
| 587 |
+
"grad_norm": 0.1578787924131897,
|
| 588 |
+
"learning_rate": 9.99682725096819e-05,
|
| 589 |
+
"loss": 0.4191,
|
| 590 |
+
"step": 83
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.12593703148425786,
|
| 594 |
+
"grad_norm": 0.14912570536521574,
|
| 595 |
+
"learning_rate": 9.996532298073525e-05,
|
| 596 |
+
"loss": 0.4145,
|
| 597 |
+
"step": 84
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.12743628185907047,
|
| 601 |
+
"grad_norm": 0.16551987182072345,
|
| 602 |
+
"learning_rate": 9.996224242355399e-05,
|
| 603 |
+
"loss": 0.3979,
|
| 604 |
+
"step": 85
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.12893553223388307,
|
| 608 |
+
"grad_norm": 0.20627144163236044,
|
| 609 |
+
"learning_rate": 9.99590308462165e-05,
|
| 610 |
+
"loss": 0.4774,
|
| 611 |
+
"step": 86
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.13043478260869565,
|
| 615 |
+
"grad_norm": 0.17621912768125048,
|
| 616 |
+
"learning_rate": 9.995568825714479e-05,
|
| 617 |
+
"loss": 0.4261,
|
| 618 |
+
"step": 87
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.13193403298350825,
|
| 622 |
+
"grad_norm": 0.17245900092543753,
|
| 623 |
+
"learning_rate": 9.995221466510439e-05,
|
| 624 |
+
"loss": 0.393,
|
| 625 |
+
"step": 88
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.13343328335832083,
|
| 629 |
+
"grad_norm": 0.1575650027375934,
|
| 630 |
+
"learning_rate": 9.99486100792044e-05,
|
| 631 |
+
"loss": 0.4537,
|
| 632 |
+
"step": 89
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.13493253373313344,
|
| 636 |
+
"grad_norm": 0.1871804347088243,
|
| 637 |
+
"learning_rate": 9.994487450889742e-05,
|
| 638 |
+
"loss": 0.517,
|
| 639 |
+
"step": 90
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.136431784107946,
|
| 643 |
+
"grad_norm": 0.20988683934292762,
|
| 644 |
+
"learning_rate": 9.994100796397954e-05,
|
| 645 |
+
"loss": 0.502,
|
| 646 |
+
"step": 91
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.13793103448275862,
|
| 650 |
+
"grad_norm": 0.17193303094730353,
|
| 651 |
+
"learning_rate": 9.993701045459033e-05,
|
| 652 |
+
"loss": 0.4646,
|
| 653 |
+
"step": 92
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.13943028485757122,
|
| 657 |
+
"grad_norm": 0.1802261880462562,
|
| 658 |
+
"learning_rate": 9.993288199121283e-05,
|
| 659 |
+
"loss": 0.3887,
|
| 660 |
+
"step": 93
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.1409295352323838,
|
| 664 |
+
"grad_norm": 0.1858715725970327,
|
| 665 |
+
"learning_rate": 9.992862258467339e-05,
|
| 666 |
+
"loss": 0.4223,
|
| 667 |
+
"step": 94
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.1424287856071964,
|
| 671 |
+
"grad_norm": 0.2089799533634207,
|
| 672 |
+
"learning_rate": 9.992423224614185e-05,
|
| 673 |
+
"loss": 0.4704,
|
| 674 |
+
"step": 95
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.14392803598200898,
|
| 678 |
+
"grad_norm": 0.19387439159050426,
|
| 679 |
+
"learning_rate": 9.991971098713136e-05,
|
| 680 |
+
"loss": 0.5326,
|
| 681 |
+
"step": 96
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.1454272863568216,
|
| 685 |
+
"grad_norm": 0.17540287484028097,
|
| 686 |
+
"learning_rate": 9.991505881949837e-05,
|
| 687 |
+
"loss": 0.486,
|
| 688 |
+
"step": 97
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.1469265367316342,
|
| 692 |
+
"grad_norm": 0.18352832628580004,
|
| 693 |
+
"learning_rate": 9.991027575544265e-05,
|
| 694 |
+
"loss": 0.4695,
|
| 695 |
+
"step": 98
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.14842578710644677,
|
| 699 |
+
"grad_norm": 0.17778807224046753,
|
| 700 |
+
"learning_rate": 9.990536180750725e-05,
|
| 701 |
+
"loss": 0.3978,
|
| 702 |
+
"step": 99
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.14992503748125938,
|
| 706 |
+
"grad_norm": 0.18825789188216346,
|
| 707 |
+
"learning_rate": 9.990031698857841e-05,
|
| 708 |
+
"loss": 0.5293,
|
| 709 |
+
"step": 100
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.15142428785607195,
|
| 713 |
+
"grad_norm": 0.17034812176222888,
|
| 714 |
+
"learning_rate": 9.989514131188559e-05,
|
| 715 |
+
"loss": 0.4371,
|
| 716 |
+
"step": 101
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.15292353823088456,
|
| 720 |
+
"grad_norm": 0.17425360317449376,
|
| 721 |
+
"learning_rate": 9.988983479100139e-05,
|
| 722 |
+
"loss": 0.4473,
|
| 723 |
+
"step": 102
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.15442278860569716,
|
| 727 |
+
"grad_norm": 0.14790150868922555,
|
| 728 |
+
"learning_rate": 9.988439743984154e-05,
|
| 729 |
+
"loss": 0.3456,
|
| 730 |
+
"step": 103
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.15592203898050974,
|
| 734 |
+
"grad_norm": 0.1665767949204408,
|
| 735 |
+
"learning_rate": 9.987882927266487e-05,
|
| 736 |
+
"loss": 0.4144,
|
| 737 |
+
"step": 104
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.15742128935532235,
|
| 741 |
+
"grad_norm": 0.16332701910274577,
|
| 742 |
+
"learning_rate": 9.987313030407323e-05,
|
| 743 |
+
"loss": 0.4261,
|
| 744 |
+
"step": 105
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.15892053973013492,
|
| 748 |
+
"grad_norm": 0.17586519504691273,
|
| 749 |
+
"learning_rate": 9.986730054901153e-05,
|
| 750 |
+
"loss": 0.4841,
|
| 751 |
+
"step": 106
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.16041979010494753,
|
| 755 |
+
"grad_norm": 0.16205425976408627,
|
| 756 |
+
"learning_rate": 9.98613400227676e-05,
|
| 757 |
+
"loss": 0.4223,
|
| 758 |
+
"step": 107
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.1619190404797601,
|
| 762 |
+
"grad_norm": 0.15623786202509718,
|
| 763 |
+
"learning_rate": 9.985524874097224e-05,
|
| 764 |
+
"loss": 0.3693,
|
| 765 |
+
"step": 108
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.1634182908545727,
|
| 769 |
+
"grad_norm": 0.164145279114984,
|
| 770 |
+
"learning_rate": 9.984902671959911e-05,
|
| 771 |
+
"loss": 0.3768,
|
| 772 |
+
"step": 109
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.16491754122938532,
|
| 776 |
+
"grad_norm": 0.22244399379247035,
|
| 777 |
+
"learning_rate": 9.984267397496474e-05,
|
| 778 |
+
"loss": 0.4043,
|
| 779 |
+
"step": 110
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.1664167916041979,
|
| 783 |
+
"grad_norm": 0.19422715657443626,
|
| 784 |
+
"learning_rate": 9.983619052372848e-05,
|
| 785 |
+
"loss": 0.3957,
|
| 786 |
+
"step": 111
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.1679160419790105,
|
| 790 |
+
"grad_norm": 0.18763312575718583,
|
| 791 |
+
"learning_rate": 9.982957638289239e-05,
|
| 792 |
+
"loss": 0.4464,
|
| 793 |
+
"step": 112
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.16941529235382308,
|
| 797 |
+
"grad_norm": 0.21251049757841928,
|
| 798 |
+
"learning_rate": 9.982283156980132e-05,
|
| 799 |
+
"loss": 0.41,
|
| 800 |
+
"step": 113
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.17091454272863568,
|
| 804 |
+
"grad_norm": 0.1796936170293695,
|
| 805 |
+
"learning_rate": 9.981595610214275e-05,
|
| 806 |
+
"loss": 0.4376,
|
| 807 |
+
"step": 114
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.1724137931034483,
|
| 811 |
+
"grad_norm": 0.175685383349515,
|
| 812 |
+
"learning_rate": 9.980894999794678e-05,
|
| 813 |
+
"loss": 0.4391,
|
| 814 |
+
"step": 115
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.17391304347826086,
|
| 818 |
+
"grad_norm": 0.17656439408156688,
|
| 819 |
+
"learning_rate": 9.980181327558609e-05,
|
| 820 |
+
"loss": 0.4314,
|
| 821 |
+
"step": 116
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.17541229385307347,
|
| 825 |
+
"grad_norm": 0.2117047330447647,
|
| 826 |
+
"learning_rate": 9.979454595377594e-05,
|
| 827 |
+
"loss": 0.4373,
|
| 828 |
+
"step": 117
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.17691154422788605,
|
| 832 |
+
"grad_norm": 0.18946879886598905,
|
| 833 |
+
"learning_rate": 9.978714805157398e-05,
|
| 834 |
+
"loss": 0.393,
|
| 835 |
+
"step": 118
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.17841079460269865,
|
| 839 |
+
"grad_norm": 0.1792721008105896,
|
| 840 |
+
"learning_rate": 9.97796195883804e-05,
|
| 841 |
+
"loss": 0.4153,
|
| 842 |
+
"step": 119
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.17991004497751126,
|
| 846 |
+
"grad_norm": 0.1707862877011526,
|
| 847 |
+
"learning_rate": 9.97719605839377e-05,
|
| 848 |
+
"loss": 0.4261,
|
| 849 |
+
"step": 120
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.18140929535232383,
|
| 853 |
+
"grad_norm": 0.22642112261502503,
|
| 854 |
+
"learning_rate": 9.97641710583307e-05,
|
| 855 |
+
"loss": 0.4251,
|
| 856 |
+
"step": 121
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.18290854572713644,
|
| 860 |
+
"grad_norm": 0.17799712739086393,
|
| 861 |
+
"learning_rate": 9.975625103198656e-05,
|
| 862 |
+
"loss": 0.3727,
|
| 863 |
+
"step": 122
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.18440779610194902,
|
| 867 |
+
"grad_norm": 0.19076577337705697,
|
| 868 |
+
"learning_rate": 9.974820052567459e-05,
|
| 869 |
+
"loss": 0.4096,
|
| 870 |
+
"step": 123
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.18590704647676162,
|
| 874 |
+
"grad_norm": 0.1714002069561427,
|
| 875 |
+
"learning_rate": 9.974001956050636e-05,
|
| 876 |
+
"loss": 0.3812,
|
| 877 |
+
"step": 124
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.1874062968515742,
|
| 881 |
+
"grad_norm": 0.19560455771266627,
|
| 882 |
+
"learning_rate": 9.973170815793543e-05,
|
| 883 |
+
"loss": 0.384,
|
| 884 |
+
"step": 125
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.1889055472263868,
|
| 888 |
+
"grad_norm": 0.19011043215359408,
|
| 889 |
+
"learning_rate": 9.972326633975752e-05,
|
| 890 |
+
"loss": 0.3454,
|
| 891 |
+
"step": 126
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.1904047976011994,
|
| 895 |
+
"grad_norm": 0.17831195896279137,
|
| 896 |
+
"learning_rate": 9.971469412811032e-05,
|
| 897 |
+
"loss": 0.3592,
|
| 898 |
+
"step": 127
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.191904047976012,
|
| 902 |
+
"grad_norm": 0.19815244106934343,
|
| 903 |
+
"learning_rate": 9.970599154547345e-05,
|
| 904 |
+
"loss": 0.4755,
|
| 905 |
+
"step": 128
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.1934032983508246,
|
| 909 |
+
"grad_norm": 0.20957770702413298,
|
| 910 |
+
"learning_rate": 9.96971586146684e-05,
|
| 911 |
+
"loss": 0.3628,
|
| 912 |
+
"step": 129
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.19490254872563717,
|
| 916 |
+
"grad_norm": 0.2668865421763697,
|
| 917 |
+
"learning_rate": 9.968819535885851e-05,
|
| 918 |
+
"loss": 0.4102,
|
| 919 |
+
"step": 130
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.19640179910044978,
|
| 923 |
+
"grad_norm": 0.2090110543133345,
|
| 924 |
+
"learning_rate": 9.967910180154889e-05,
|
| 925 |
+
"loss": 0.4069,
|
| 926 |
+
"step": 131
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.19790104947526238,
|
| 930 |
+
"grad_norm": 0.24642703407803873,
|
| 931 |
+
"learning_rate": 9.966987796658631e-05,
|
| 932 |
+
"loss": 0.4035,
|
| 933 |
+
"step": 132
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.19940029985007496,
|
| 937 |
+
"grad_norm": 0.1842758332631964,
|
| 938 |
+
"learning_rate": 9.966052387815923e-05,
|
| 939 |
+
"loss": 0.3659,
|
| 940 |
+
"step": 133
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.20089955022488756,
|
| 944 |
+
"grad_norm": 0.24323992002330513,
|
| 945 |
+
"learning_rate": 9.965103956079764e-05,
|
| 946 |
+
"loss": 0.3514,
|
| 947 |
+
"step": 134
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.20239880059970014,
|
| 951 |
+
"grad_norm": 0.1936647477893177,
|
| 952 |
+
"learning_rate": 9.964142503937305e-05,
|
| 953 |
+
"loss": 0.4008,
|
| 954 |
+
"step": 135
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.20389805097451275,
|
| 958 |
+
"grad_norm": 0.18353917867126332,
|
| 959 |
+
"learning_rate": 9.963168033909842e-05,
|
| 960 |
+
"loss": 0.4653,
|
| 961 |
+
"step": 136
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.20539730134932535,
|
| 965 |
+
"grad_norm": 0.17984301535007757,
|
| 966 |
+
"learning_rate": 9.962180548552812e-05,
|
| 967 |
+
"loss": 0.3469,
|
| 968 |
+
"step": 137
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.20689655172413793,
|
| 972 |
+
"grad_norm": 0.15120437502884132,
|
| 973 |
+
"learning_rate": 9.961180050455776e-05,
|
| 974 |
+
"loss": 0.351,
|
| 975 |
+
"step": 138
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.20839580209895053,
|
| 979 |
+
"grad_norm": 0.1940183704497967,
|
| 980 |
+
"learning_rate": 9.960166542242429e-05,
|
| 981 |
+
"loss": 0.4502,
|
| 982 |
+
"step": 139
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.2098950524737631,
|
| 986 |
+
"grad_norm": 0.18140590696808803,
|
| 987 |
+
"learning_rate": 9.959140026570571e-05,
|
| 988 |
+
"loss": 0.3881,
|
| 989 |
+
"step": 140
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.21139430284857572,
|
| 993 |
+
"grad_norm": 0.20509489934011485,
|
| 994 |
+
"learning_rate": 9.958100506132127e-05,
|
| 995 |
+
"loss": 0.3989,
|
| 996 |
+
"step": 141
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.2128935532233883,
|
| 1000 |
+
"grad_norm": 0.22956081410465642,
|
| 1001 |
+
"learning_rate": 9.957047983653112e-05,
|
| 1002 |
+
"loss": 0.4364,
|
| 1003 |
+
"step": 142
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.2143928035982009,
|
| 1007 |
+
"grad_norm": 0.22742506736584492,
|
| 1008 |
+
"learning_rate": 9.955982461893648e-05,
|
| 1009 |
+
"loss": 0.3759,
|
| 1010 |
+
"step": 143
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.2158920539730135,
|
| 1014 |
+
"grad_norm": 0.21527165492782585,
|
| 1015 |
+
"learning_rate": 9.95490394364794e-05,
|
| 1016 |
+
"loss": 0.2983,
|
| 1017 |
+
"step": 144
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.21739130434782608,
|
| 1021 |
+
"grad_norm": 0.21962083012454633,
|
| 1022 |
+
"learning_rate": 9.953812431744276e-05,
|
| 1023 |
+
"loss": 0.3671,
|
| 1024 |
+
"step": 145
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.21889055472263869,
|
| 1028 |
+
"grad_norm": 0.23771093531148652,
|
| 1029 |
+
"learning_rate": 9.952707929045018e-05,
|
| 1030 |
+
"loss": 0.4624,
|
| 1031 |
+
"step": 146
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.22038980509745126,
|
| 1035 |
+
"grad_norm": 0.19791375536680578,
|
| 1036 |
+
"learning_rate": 9.951590438446597e-05,
|
| 1037 |
+
"loss": 0.3225,
|
| 1038 |
+
"step": 147
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.22188905547226387,
|
| 1042 |
+
"grad_norm": 0.32250544686686966,
|
| 1043 |
+
"learning_rate": 9.950459962879501e-05,
|
| 1044 |
+
"loss": 0.5021,
|
| 1045 |
+
"step": 148
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.22338830584707647,
|
| 1049 |
+
"grad_norm": 0.19025646517044104,
|
| 1050 |
+
"learning_rate": 9.949316505308271e-05,
|
| 1051 |
+
"loss": 0.3362,
|
| 1052 |
+
"step": 149
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.22488755622188905,
|
| 1056 |
+
"grad_norm": 0.23171598436518906,
|
| 1057 |
+
"learning_rate": 9.948160068731492e-05,
|
| 1058 |
+
"loss": 0.4147,
|
| 1059 |
+
"step": 150
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.22638680659670166,
|
| 1063 |
+
"grad_norm": 0.21490934617214158,
|
| 1064 |
+
"learning_rate": 9.946990656181781e-05,
|
| 1065 |
+
"loss": 0.3718,
|
| 1066 |
+
"step": 151
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.22788605697151423,
|
| 1070 |
+
"grad_norm": 0.1848795090470031,
|
| 1071 |
+
"learning_rate": 9.94580827072579e-05,
|
| 1072 |
+
"loss": 0.276,
|
| 1073 |
+
"step": 152
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.22938530734632684,
|
| 1077 |
+
"grad_norm": 0.25502312806021005,
|
| 1078 |
+
"learning_rate": 9.944612915464183e-05,
|
| 1079 |
+
"loss": 0.4083,
|
| 1080 |
+
"step": 153
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.23088455772113944,
|
| 1084 |
+
"grad_norm": 0.20542670291097567,
|
| 1085 |
+
"learning_rate": 9.943404593531642e-05,
|
| 1086 |
+
"loss": 0.3809,
|
| 1087 |
+
"step": 154
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.23238380809595202,
|
| 1091 |
+
"grad_norm": 0.22026384344552674,
|
| 1092 |
+
"learning_rate": 9.942183308096853e-05,
|
| 1093 |
+
"loss": 0.4016,
|
| 1094 |
+
"step": 155
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.23388305847076463,
|
| 1098 |
+
"grad_norm": 0.19714327494884368,
|
| 1099 |
+
"learning_rate": 9.940949062362491e-05,
|
| 1100 |
+
"loss": 0.443,
|
| 1101 |
+
"step": 156
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.2353823088455772,
|
| 1105 |
+
"grad_norm": 0.26398285509147246,
|
| 1106 |
+
"learning_rate": 9.93970185956522e-05,
|
| 1107 |
+
"loss": 0.3443,
|
| 1108 |
+
"step": 157
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.2368815592203898,
|
| 1112 |
+
"grad_norm": 0.2322940585931519,
|
| 1113 |
+
"learning_rate": 9.938441702975689e-05,
|
| 1114 |
+
"loss": 0.3821,
|
| 1115 |
+
"step": 158
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.2383808095952024,
|
| 1119 |
+
"grad_norm": 0.29436888057782273,
|
| 1120 |
+
"learning_rate": 9.93716859589851e-05,
|
| 1121 |
+
"loss": 0.4868,
|
| 1122 |
+
"step": 159
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.239880059970015,
|
| 1126 |
+
"grad_norm": 0.23844652608528716,
|
| 1127 |
+
"learning_rate": 9.935882541672254e-05,
|
| 1128 |
+
"loss": 0.3814,
|
| 1129 |
+
"step": 160
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 0.2413793103448276,
|
| 1133 |
+
"grad_norm": 0.23419887056713967,
|
| 1134 |
+
"learning_rate": 9.934583543669453e-05,
|
| 1135 |
+
"loss": 0.3768,
|
| 1136 |
+
"step": 161
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.24287856071964017,
|
| 1140 |
+
"grad_norm": 0.21730325741302678,
|
| 1141 |
+
"learning_rate": 9.933271605296577e-05,
|
| 1142 |
+
"loss": 0.3537,
|
| 1143 |
+
"step": 162
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.24437781109445278,
|
| 1147 |
+
"grad_norm": 0.21541731452628599,
|
| 1148 |
+
"learning_rate": 9.931946729994031e-05,
|
| 1149 |
+
"loss": 0.4232,
|
| 1150 |
+
"step": 163
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.24587706146926536,
|
| 1154 |
+
"grad_norm": 0.23563529017372173,
|
| 1155 |
+
"learning_rate": 9.930608921236144e-05,
|
| 1156 |
+
"loss": 0.3695,
|
| 1157 |
+
"step": 164
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.24737631184407796,
|
| 1161 |
+
"grad_norm": 0.20973292220708206,
|
| 1162 |
+
"learning_rate": 9.929258182531167e-05,
|
| 1163 |
+
"loss": 0.325,
|
| 1164 |
+
"step": 165
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.24887556221889057,
|
| 1168 |
+
"grad_norm": 0.22036794347096889,
|
| 1169 |
+
"learning_rate": 9.927894517421252e-05,
|
| 1170 |
+
"loss": 0.368,
|
| 1171 |
+
"step": 166
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.25037481259370314,
|
| 1175 |
+
"grad_norm": 0.20800248434514584,
|
| 1176 |
+
"learning_rate": 9.926517929482453e-05,
|
| 1177 |
+
"loss": 0.3155,
|
| 1178 |
+
"step": 167
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.2518740629685157,
|
| 1182 |
+
"grad_norm": 0.23072666850100082,
|
| 1183 |
+
"learning_rate": 9.925128422324711e-05,
|
| 1184 |
+
"loss": 0.3258,
|
| 1185 |
+
"step": 168
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.25337331334332835,
|
| 1189 |
+
"grad_norm": 0.16981406756976633,
|
| 1190 |
+
"learning_rate": 9.923725999591847e-05,
|
| 1191 |
+
"loss": 0.3147,
|
| 1192 |
+
"step": 169
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.25487256371814093,
|
| 1196 |
+
"grad_norm": 0.251626688469978,
|
| 1197 |
+
"learning_rate": 9.92231066496155e-05,
|
| 1198 |
+
"loss": 0.3961,
|
| 1199 |
+
"step": 170
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.2563718140929535,
|
| 1203 |
+
"grad_norm": 0.20921325165098897,
|
| 1204 |
+
"learning_rate": 9.920882422145372e-05,
|
| 1205 |
+
"loss": 0.3919,
|
| 1206 |
+
"step": 171
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.25787106446776614,
|
| 1210 |
+
"grad_norm": 0.24926718700118658,
|
| 1211 |
+
"learning_rate": 9.919441274888712e-05,
|
| 1212 |
+
"loss": 0.3689,
|
| 1213 |
+
"step": 172
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 0.2593703148425787,
|
| 1217 |
+
"grad_norm": 0.23092168312947756,
|
| 1218 |
+
"learning_rate": 9.91798722697081e-05,
|
| 1219 |
+
"loss": 0.3133,
|
| 1220 |
+
"step": 173
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.2608695652173913,
|
| 1224 |
+
"grad_norm": 0.21351161322704978,
|
| 1225 |
+
"learning_rate": 9.916520282204738e-05,
|
| 1226 |
+
"loss": 0.4149,
|
| 1227 |
+
"step": 174
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.2623688155922039,
|
| 1231 |
+
"grad_norm": 0.24423924014340928,
|
| 1232 |
+
"learning_rate": 9.915040444437389e-05,
|
| 1233 |
+
"loss": 0.3703,
|
| 1234 |
+
"step": 175
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.2638680659670165,
|
| 1238 |
+
"grad_norm": 0.29589731176441575,
|
| 1239 |
+
"learning_rate": 9.913547717549463e-05,
|
| 1240 |
+
"loss": 0.4704,
|
| 1241 |
+
"step": 176
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 0.2653673163418291,
|
| 1245 |
+
"grad_norm": 0.26638215250105196,
|
| 1246 |
+
"learning_rate": 9.912042105455463e-05,
|
| 1247 |
+
"loss": 0.5577,
|
| 1248 |
+
"step": 177
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.26686656671664166,
|
| 1252 |
+
"grad_norm": 0.22215452288279844,
|
| 1253 |
+
"learning_rate": 9.91052361210368e-05,
|
| 1254 |
+
"loss": 0.3465,
|
| 1255 |
+
"step": 178
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 0.2683658170914543,
|
| 1259 |
+
"grad_norm": 0.17477471131962302,
|
| 1260 |
+
"learning_rate": 9.908992241476188e-05,
|
| 1261 |
+
"loss": 0.2784,
|
| 1262 |
+
"step": 179
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.2698650674662669,
|
| 1266 |
+
"grad_norm": 0.2780190499956454,
|
| 1267 |
+
"learning_rate": 9.907447997588827e-05,
|
| 1268 |
+
"loss": 0.4407,
|
| 1269 |
+
"step": 180
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.27136431784107945,
|
| 1273 |
+
"grad_norm": 0.22512347747614664,
|
| 1274 |
+
"learning_rate": 9.905890884491195e-05,
|
| 1275 |
+
"loss": 0.3757,
|
| 1276 |
+
"step": 181
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 0.272863568215892,
|
| 1280 |
+
"grad_norm": 0.22917414937417574,
|
| 1281 |
+
"learning_rate": 9.904320906266642e-05,
|
| 1282 |
+
"loss": 0.3356,
|
| 1283 |
+
"step": 182
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.27436281859070466,
|
| 1287 |
+
"grad_norm": 0.23889689023715455,
|
| 1288 |
+
"learning_rate": 9.902738067032253e-05,
|
| 1289 |
+
"loss": 0.3923,
|
| 1290 |
+
"step": 183
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.27586206896551724,
|
| 1294 |
+
"grad_norm": 0.25279219700986705,
|
| 1295 |
+
"learning_rate": 9.901142370938837e-05,
|
| 1296 |
+
"loss": 0.3598,
|
| 1297 |
+
"step": 184
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 0.2773613193403298,
|
| 1301 |
+
"grad_norm": 0.24373792827720528,
|
| 1302 |
+
"learning_rate": 9.899533822170922e-05,
|
| 1303 |
+
"loss": 0.363,
|
| 1304 |
+
"step": 185
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 0.27886056971514245,
|
| 1308 |
+
"grad_norm": 0.21342522741136943,
|
| 1309 |
+
"learning_rate": 9.89791242494674e-05,
|
| 1310 |
+
"loss": 0.3729,
|
| 1311 |
+
"step": 186
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.280359820089955,
|
| 1315 |
+
"grad_norm": 0.20688482475505948,
|
| 1316 |
+
"learning_rate": 9.896278183518216e-05,
|
| 1317 |
+
"loss": 0.4067,
|
| 1318 |
+
"step": 187
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 0.2818590704647676,
|
| 1322 |
+
"grad_norm": 0.238242020004113,
|
| 1323 |
+
"learning_rate": 9.894631102170958e-05,
|
| 1324 |
+
"loss": 0.3519,
|
| 1325 |
+
"step": 188
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 0.28335832083958024,
|
| 1329 |
+
"grad_norm": 0.20684969370504117,
|
| 1330 |
+
"learning_rate": 9.892971185224245e-05,
|
| 1331 |
+
"loss": 0.2947,
|
| 1332 |
+
"step": 189
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.2848575712143928,
|
| 1336 |
+
"grad_norm": 0.24536501295200672,
|
| 1337 |
+
"learning_rate": 9.891298437031014e-05,
|
| 1338 |
+
"loss": 0.4395,
|
| 1339 |
+
"step": 190
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 0.2863568215892054,
|
| 1343 |
+
"grad_norm": 0.23631131035836886,
|
| 1344 |
+
"learning_rate": 9.889612861977853e-05,
|
| 1345 |
+
"loss": 0.4022,
|
| 1346 |
+
"step": 191
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.28785607196401797,
|
| 1350 |
+
"grad_norm": 0.20688289767576518,
|
| 1351 |
+
"learning_rate": 9.887914464484988e-05,
|
| 1352 |
+
"loss": 0.3575,
|
| 1353 |
+
"step": 192
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.2893553223388306,
|
| 1357 |
+
"grad_norm": 0.23795476789993122,
|
| 1358 |
+
"learning_rate": 9.886203249006265e-05,
|
| 1359 |
+
"loss": 0.488,
|
| 1360 |
+
"step": 193
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.2908545727136432,
|
| 1364 |
+
"grad_norm": 0.1980321443248457,
|
| 1365 |
+
"learning_rate": 9.884479220029151e-05,
|
| 1366 |
+
"loss": 0.3239,
|
| 1367 |
+
"step": 194
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.29235382308845576,
|
| 1371 |
+
"grad_norm": 0.2508337482224898,
|
| 1372 |
+
"learning_rate": 9.882742382074707e-05,
|
| 1373 |
+
"loss": 0.3784,
|
| 1374 |
+
"step": 195
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.2938530734632684,
|
| 1378 |
+
"grad_norm": 0.2705233150633363,
|
| 1379 |
+
"learning_rate": 9.88099273969759e-05,
|
| 1380 |
+
"loss": 0.3126,
|
| 1381 |
+
"step": 196
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.29535232383808097,
|
| 1385 |
+
"grad_norm": 0.28528624064091823,
|
| 1386 |
+
"learning_rate": 9.879230297486034e-05,
|
| 1387 |
+
"loss": 0.3765,
|
| 1388 |
+
"step": 197
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.29685157421289354,
|
| 1392 |
+
"grad_norm": 0.27223486197115127,
|
| 1393 |
+
"learning_rate": 9.877455060061838e-05,
|
| 1394 |
+
"loss": 0.3464,
|
| 1395 |
+
"step": 198
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.2983508245877061,
|
| 1399 |
+
"grad_norm": 0.20975877053780698,
|
| 1400 |
+
"learning_rate": 9.875667032080353e-05,
|
| 1401 |
+
"loss": 0.3696,
|
| 1402 |
+
"step": 199
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.29985007496251875,
|
| 1406 |
+
"grad_norm": 0.20202593056199547,
|
| 1407 |
+
"learning_rate": 9.873866218230476e-05,
|
| 1408 |
+
"loss": 0.327,
|
| 1409 |
+
"step": 200
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 0.29985007496251875,
|
| 1413 |
+
"eval_loss": 0.3760811984539032,
|
| 1414 |
+
"eval_runtime": 9.3971,
|
| 1415 |
+
"eval_samples_per_second": 5.746,
|
| 1416 |
+
"eval_steps_per_second": 1.49,
|
| 1417 |
+
"step": 200
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.30134932533733133,
|
| 1421 |
+
"grad_norm": 0.20797626168359745,
|
| 1422 |
+
"learning_rate": 9.872052623234632e-05,
|
| 1423 |
+
"loss": 0.2917,
|
| 1424 |
+
"step": 201
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.3028485757121439,
|
| 1428 |
+
"grad_norm": 0.27008080271764223,
|
| 1429 |
+
"learning_rate": 9.870226251848758e-05,
|
| 1430 |
+
"loss": 0.3787,
|
| 1431 |
+
"step": 202
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.30434782608695654,
|
| 1435 |
+
"grad_norm": 0.2653659753832694,
|
| 1436 |
+
"learning_rate": 9.868387108862307e-05,
|
| 1437 |
+
"loss": 0.3147,
|
| 1438 |
+
"step": 203
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.3058470764617691,
|
| 1442 |
+
"grad_norm": 0.22329571999161857,
|
| 1443 |
+
"learning_rate": 9.866535199098212e-05,
|
| 1444 |
+
"loss": 0.2917,
|
| 1445 |
+
"step": 204
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.3073463268365817,
|
| 1449 |
+
"grad_norm": 0.25966484872877343,
|
| 1450 |
+
"learning_rate": 9.864670527412891e-05,
|
| 1451 |
+
"loss": 0.3668,
|
| 1452 |
+
"step": 205
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.30884557721139433,
|
| 1456 |
+
"grad_norm": 0.2521720904017885,
|
| 1457 |
+
"learning_rate": 9.86279309869623e-05,
|
| 1458 |
+
"loss": 0.3673,
|
| 1459 |
+
"step": 206
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.3103448275862069,
|
| 1463 |
+
"grad_norm": 0.23732244427926463,
|
| 1464 |
+
"learning_rate": 9.860902917871567e-05,
|
| 1465 |
+
"loss": 0.3677,
|
| 1466 |
+
"step": 207
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.3118440779610195,
|
| 1470 |
+
"grad_norm": 0.2955078675425853,
|
| 1471 |
+
"learning_rate": 9.858999989895678e-05,
|
| 1472 |
+
"loss": 0.4393,
|
| 1473 |
+
"step": 208
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.31334332833583206,
|
| 1477 |
+
"grad_norm": 0.22332660189204384,
|
| 1478 |
+
"learning_rate": 9.857084319758772e-05,
|
| 1479 |
+
"loss": 0.3689,
|
| 1480 |
+
"step": 209
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.3148425787106447,
|
| 1484 |
+
"grad_norm": 0.22760182192880996,
|
| 1485 |
+
"learning_rate": 9.85515591248447e-05,
|
| 1486 |
+
"loss": 0.3867,
|
| 1487 |
+
"step": 210
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 0.31634182908545727,
|
| 1491 |
+
"grad_norm": 0.24914198184951847,
|
| 1492 |
+
"learning_rate": 9.853214773129796e-05,
|
| 1493 |
+
"loss": 0.3589,
|
| 1494 |
+
"step": 211
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.31784107946026985,
|
| 1498 |
+
"grad_norm": 0.23576174897868454,
|
| 1499 |
+
"learning_rate": 9.851260906785161e-05,
|
| 1500 |
+
"loss": 0.3448,
|
| 1501 |
+
"step": 212
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 0.3193403298350825,
|
| 1505 |
+
"grad_norm": 0.29164953095585383,
|
| 1506 |
+
"learning_rate": 9.849294318574351e-05,
|
| 1507 |
+
"loss": 0.4416,
|
| 1508 |
+
"step": 213
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 0.32083958020989506,
|
| 1512 |
+
"grad_norm": 0.2586079180874359,
|
| 1513 |
+
"learning_rate": 9.847315013654517e-05,
|
| 1514 |
+
"loss": 0.368,
|
| 1515 |
+
"step": 214
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.32233883058470764,
|
| 1519 |
+
"grad_norm": 0.2339697800825202,
|
| 1520 |
+
"learning_rate": 9.845322997216153e-05,
|
| 1521 |
+
"loss": 0.3323,
|
| 1522 |
+
"step": 215
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.3238380809595202,
|
| 1526 |
+
"grad_norm": 0.23665725114029154,
|
| 1527 |
+
"learning_rate": 9.843318274483089e-05,
|
| 1528 |
+
"loss": 0.389,
|
| 1529 |
+
"step": 216
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 0.32533733133433285,
|
| 1533 |
+
"grad_norm": 0.20956611594099658,
|
| 1534 |
+
"learning_rate": 9.84130085071248e-05,
|
| 1535 |
+
"loss": 0.3477,
|
| 1536 |
+
"step": 217
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.3268365817091454,
|
| 1540 |
+
"grad_norm": 0.26392168214587325,
|
| 1541 |
+
"learning_rate": 9.839270731194781e-05,
|
| 1542 |
+
"loss": 0.3638,
|
| 1543 |
+
"step": 218
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 0.328335832083958,
|
| 1547 |
+
"grad_norm": 0.22253773776911556,
|
| 1548 |
+
"learning_rate": 9.837227921253746e-05,
|
| 1549 |
+
"loss": 0.3204,
|
| 1550 |
+
"step": 219
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 0.32983508245877063,
|
| 1554 |
+
"grad_norm": 0.2665743634558936,
|
| 1555 |
+
"learning_rate": 9.835172426246406e-05,
|
| 1556 |
+
"loss": 0.3809,
|
| 1557 |
+
"step": 220
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.3313343328335832,
|
| 1561 |
+
"grad_norm": 0.24556387681728048,
|
| 1562 |
+
"learning_rate": 9.833104251563056e-05,
|
| 1563 |
+
"loss": 0.3658,
|
| 1564 |
+
"step": 221
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 0.3328335832083958,
|
| 1568 |
+
"grad_norm": 0.24141132534691834,
|
| 1569 |
+
"learning_rate": 9.831023402627244e-05,
|
| 1570 |
+
"loss": 0.3878,
|
| 1571 |
+
"step": 222
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 0.3343328335832084,
|
| 1575 |
+
"grad_norm": 0.21299779644052697,
|
| 1576 |
+
"learning_rate": 9.828929884895752e-05,
|
| 1577 |
+
"loss": 0.3385,
|
| 1578 |
+
"step": 223
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.335832083958021,
|
| 1582 |
+
"grad_norm": 0.2817444763775132,
|
| 1583 |
+
"learning_rate": 9.826823703858589e-05,
|
| 1584 |
+
"loss": 0.3609,
|
| 1585 |
+
"step": 224
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 0.3373313343328336,
|
| 1589 |
+
"grad_norm": 0.23675212339499258,
|
| 1590 |
+
"learning_rate": 9.824704865038968e-05,
|
| 1591 |
+
"loss": 0.345,
|
| 1592 |
+
"step": 225
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.33883058470764615,
|
| 1596 |
+
"grad_norm": 0.26616531581298974,
|
| 1597 |
+
"learning_rate": 9.822573373993295e-05,
|
| 1598 |
+
"loss": 0.4403,
|
| 1599 |
+
"step": 226
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.3403298350824588,
|
| 1603 |
+
"grad_norm": 0.25547096640384365,
|
| 1604 |
+
"learning_rate": 9.820429236311158e-05,
|
| 1605 |
+
"loss": 0.329,
|
| 1606 |
+
"step": 227
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.34182908545727136,
|
| 1610 |
+
"grad_norm": 0.2069046648269492,
|
| 1611 |
+
"learning_rate": 9.81827245761531e-05,
|
| 1612 |
+
"loss": 0.3093,
|
| 1613 |
+
"step": 228
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.34332833583208394,
|
| 1617 |
+
"grad_norm": 0.22028926871844512,
|
| 1618 |
+
"learning_rate": 9.816103043561648e-05,
|
| 1619 |
+
"loss": 0.3145,
|
| 1620 |
+
"step": 229
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.3448275862068966,
|
| 1624 |
+
"grad_norm": 0.22267908189639102,
|
| 1625 |
+
"learning_rate": 9.81392099983921e-05,
|
| 1626 |
+
"loss": 0.3522,
|
| 1627 |
+
"step": 230
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.34632683658170915,
|
| 1631 |
+
"grad_norm": 0.26736838753831266,
|
| 1632 |
+
"learning_rate": 9.811726332170153e-05,
|
| 1633 |
+
"loss": 0.3131,
|
| 1634 |
+
"step": 231
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.34782608695652173,
|
| 1638 |
+
"grad_norm": 0.27031685049924925,
|
| 1639 |
+
"learning_rate": 9.809519046309732e-05,
|
| 1640 |
+
"loss": 0.3304,
|
| 1641 |
+
"step": 232
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.3493253373313343,
|
| 1645 |
+
"grad_norm": 0.2287552620096828,
|
| 1646 |
+
"learning_rate": 9.8072991480463e-05,
|
| 1647 |
+
"loss": 0.3362,
|
| 1648 |
+
"step": 233
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.35082458770614694,
|
| 1652 |
+
"grad_norm": 0.248714164280034,
|
| 1653 |
+
"learning_rate": 9.805066643201282e-05,
|
| 1654 |
+
"loss": 0.4216,
|
| 1655 |
+
"step": 234
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.3523238380809595,
|
| 1659 |
+
"grad_norm": 0.2602266675933893,
|
| 1660 |
+
"learning_rate": 9.802821537629161e-05,
|
| 1661 |
+
"loss": 0.3405,
|
| 1662 |
+
"step": 235
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.3538230884557721,
|
| 1666 |
+
"grad_norm": 0.2605825891602772,
|
| 1667 |
+
"learning_rate": 9.800563837217464e-05,
|
| 1668 |
+
"loss": 0.352,
|
| 1669 |
+
"step": 236
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.3553223388305847,
|
| 1673 |
+
"grad_norm": 0.25964426129393503,
|
| 1674 |
+
"learning_rate": 9.798293547886748e-05,
|
| 1675 |
+
"loss": 0.3862,
|
| 1676 |
+
"step": 237
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.3568215892053973,
|
| 1680 |
+
"grad_norm": 0.2700571209610955,
|
| 1681 |
+
"learning_rate": 9.796010675590581e-05,
|
| 1682 |
+
"loss": 0.3916,
|
| 1683 |
+
"step": 238
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.3583208395802099,
|
| 1687 |
+
"grad_norm": 0.26143094542633033,
|
| 1688 |
+
"learning_rate": 9.79371522631553e-05,
|
| 1689 |
+
"loss": 0.4112,
|
| 1690 |
+
"step": 239
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.3598200899550225,
|
| 1694 |
+
"grad_norm": 0.3029423068355501,
|
| 1695 |
+
"learning_rate": 9.791407206081144e-05,
|
| 1696 |
+
"loss": 0.3856,
|
| 1697 |
+
"step": 240
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.3613193403298351,
|
| 1701 |
+
"grad_norm": 0.253427922964557,
|
| 1702 |
+
"learning_rate": 9.789086620939936e-05,
|
| 1703 |
+
"loss": 0.3722,
|
| 1704 |
+
"step": 241
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.36281859070464767,
|
| 1708 |
+
"grad_norm": 0.3183096353136163,
|
| 1709 |
+
"learning_rate": 9.78675347697737e-05,
|
| 1710 |
+
"loss": 0.3626,
|
| 1711 |
+
"step": 242
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.36431784107946025,
|
| 1715 |
+
"grad_norm": 0.2947544176016858,
|
| 1716 |
+
"learning_rate": 9.784407780311845e-05,
|
| 1717 |
+
"loss": 0.381,
|
| 1718 |
+
"step": 243
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.3658170914542729,
|
| 1722 |
+
"grad_norm": 0.2729444657167005,
|
| 1723 |
+
"learning_rate": 9.782049537094675e-05,
|
| 1724 |
+
"loss": 0.3377,
|
| 1725 |
+
"step": 244
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.36731634182908546,
|
| 1729 |
+
"grad_norm": 0.23178174073132465,
|
| 1730 |
+
"learning_rate": 9.779678753510081e-05,
|
| 1731 |
+
"loss": 0.3414,
|
| 1732 |
+
"step": 245
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.36881559220389803,
|
| 1736 |
+
"grad_norm": 0.2825828472645432,
|
| 1737 |
+
"learning_rate": 9.777295435775165e-05,
|
| 1738 |
+
"loss": 0.3497,
|
| 1739 |
+
"step": 246
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.37031484257871067,
|
| 1743 |
+
"grad_norm": 0.26645833461164664,
|
| 1744 |
+
"learning_rate": 9.774899590139896e-05,
|
| 1745 |
+
"loss": 0.4364,
|
| 1746 |
+
"step": 247
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.37181409295352325,
|
| 1750 |
+
"grad_norm": 0.23712519611329114,
|
| 1751 |
+
"learning_rate": 9.772491222887108e-05,
|
| 1752 |
+
"loss": 0.3539,
|
| 1753 |
+
"step": 248
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.3733133433283358,
|
| 1757 |
+
"grad_norm": 0.2733836951147141,
|
| 1758 |
+
"learning_rate": 9.770070340332456e-05,
|
| 1759 |
+
"loss": 0.3737,
|
| 1760 |
+
"step": 249
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.3748125937031484,
|
| 1764 |
+
"grad_norm": 0.2878369504999718,
|
| 1765 |
+
"learning_rate": 9.767636948824429e-05,
|
| 1766 |
+
"loss": 0.3587,
|
| 1767 |
+
"step": 250
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.37631184407796103,
|
| 1771 |
+
"grad_norm": 0.23506650877109067,
|
| 1772 |
+
"learning_rate": 9.765191054744305e-05,
|
| 1773 |
+
"loss": 0.3227,
|
| 1774 |
+
"step": 251
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.3778110944527736,
|
| 1778 |
+
"grad_norm": 0.2289756510820255,
|
| 1779 |
+
"learning_rate": 9.762732664506162e-05,
|
| 1780 |
+
"loss": 0.3295,
|
| 1781 |
+
"step": 252
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.3793103448275862,
|
| 1785 |
+
"grad_norm": 0.25655839600121205,
|
| 1786 |
+
"learning_rate": 9.760261784556839e-05,
|
| 1787 |
+
"loss": 0.4075,
|
| 1788 |
+
"step": 253
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.3808095952023988,
|
| 1792 |
+
"grad_norm": 0.2828449228240892,
|
| 1793 |
+
"learning_rate": 9.757778421375931e-05,
|
| 1794 |
+
"loss": 0.3603,
|
| 1795 |
+
"step": 254
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.3823088455772114,
|
| 1799 |
+
"grad_norm": 0.2264172708698365,
|
| 1800 |
+
"learning_rate": 9.755282581475769e-05,
|
| 1801 |
+
"loss": 0.3591,
|
| 1802 |
+
"step": 255
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.383808095952024,
|
| 1806 |
+
"grad_norm": 0.32419712905550324,
|
| 1807 |
+
"learning_rate": 9.752774271401402e-05,
|
| 1808 |
+
"loss": 0.3927,
|
| 1809 |
+
"step": 256
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.3853073463268366,
|
| 1813 |
+
"grad_norm": 0.21261632252005214,
|
| 1814 |
+
"learning_rate": 9.75025349773058e-05,
|
| 1815 |
+
"loss": 0.337,
|
| 1816 |
+
"step": 257
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.3868065967016492,
|
| 1820 |
+
"grad_norm": 0.24672564693562782,
|
| 1821 |
+
"learning_rate": 9.747720267073739e-05,
|
| 1822 |
+
"loss": 0.3773,
|
| 1823 |
+
"step": 258
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.38830584707646176,
|
| 1827 |
+
"grad_norm": 0.3289152739555464,
|
| 1828 |
+
"learning_rate": 9.745174586073981e-05,
|
| 1829 |
+
"loss": 0.3636,
|
| 1830 |
+
"step": 259
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.38980509745127434,
|
| 1834 |
+
"grad_norm": 0.23791401611376534,
|
| 1835 |
+
"learning_rate": 9.742616461407058e-05,
|
| 1836 |
+
"loss": 0.3716,
|
| 1837 |
+
"step": 260
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.391304347826087,
|
| 1841 |
+
"grad_norm": 0.3244410680415994,
|
| 1842 |
+
"learning_rate": 9.740045899781352e-05,
|
| 1843 |
+
"loss": 0.4267,
|
| 1844 |
+
"step": 261
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.39280359820089955,
|
| 1848 |
+
"grad_norm": 0.2832504337710305,
|
| 1849 |
+
"learning_rate": 9.737462907937864e-05,
|
| 1850 |
+
"loss": 0.4039,
|
| 1851 |
+
"step": 262
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.39430284857571213,
|
| 1855 |
+
"grad_norm": 0.26259910556582383,
|
| 1856 |
+
"learning_rate": 9.734867492650186e-05,
|
| 1857 |
+
"loss": 0.2972,
|
| 1858 |
+
"step": 263
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.39580209895052476,
|
| 1862 |
+
"grad_norm": 0.30388172270525105,
|
| 1863 |
+
"learning_rate": 9.732259660724494e-05,
|
| 1864 |
+
"loss": 0.4006,
|
| 1865 |
+
"step": 264
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.39730134932533734,
|
| 1869 |
+
"grad_norm": 0.30010730154486515,
|
| 1870 |
+
"learning_rate": 9.729639418999523e-05,
|
| 1871 |
+
"loss": 0.3727,
|
| 1872 |
+
"step": 265
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.3988005997001499,
|
| 1876 |
+
"grad_norm": 0.2571533839616395,
|
| 1877 |
+
"learning_rate": 9.727006774346551e-05,
|
| 1878 |
+
"loss": 0.4284,
|
| 1879 |
+
"step": 266
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.4002998500749625,
|
| 1883 |
+
"grad_norm": 0.24941510856749405,
|
| 1884 |
+
"learning_rate": 9.724361733669381e-05,
|
| 1885 |
+
"loss": 0.3231,
|
| 1886 |
+
"step": 267
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.4017991004497751,
|
| 1890 |
+
"grad_norm": 0.2594599918439636,
|
| 1891 |
+
"learning_rate": 9.721704303904325e-05,
|
| 1892 |
+
"loss": 0.3587,
|
| 1893 |
+
"step": 268
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.4032983508245877,
|
| 1897 |
+
"grad_norm": 0.21929175486166685,
|
| 1898 |
+
"learning_rate": 9.719034492020183e-05,
|
| 1899 |
+
"loss": 0.3131,
|
| 1900 |
+
"step": 269
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 0.4047976011994003,
|
| 1904 |
+
"grad_norm": 0.2542813579445722,
|
| 1905 |
+
"learning_rate": 9.716352305018223e-05,
|
| 1906 |
+
"loss": 0.3283,
|
| 1907 |
+
"step": 270
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 0.4062968515742129,
|
| 1911 |
+
"grad_norm": 0.2327355156412815,
|
| 1912 |
+
"learning_rate": 9.713657749932172e-05,
|
| 1913 |
+
"loss": 0.31,
|
| 1914 |
+
"step": 271
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 0.4077961019490255,
|
| 1918 |
+
"grad_norm": 0.2921037233648013,
|
| 1919 |
+
"learning_rate": 9.710950833828182e-05,
|
| 1920 |
+
"loss": 0.3507,
|
| 1921 |
+
"step": 272
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 0.40929535232383807,
|
| 1925 |
+
"grad_norm": 0.27754577604624747,
|
| 1926 |
+
"learning_rate": 9.708231563804828e-05,
|
| 1927 |
+
"loss": 0.4316,
|
| 1928 |
+
"step": 273
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.4107946026986507,
|
| 1932 |
+
"grad_norm": 0.2810106040701159,
|
| 1933 |
+
"learning_rate": 9.705499946993078e-05,
|
| 1934 |
+
"loss": 0.3343,
|
| 1935 |
+
"step": 274
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.4122938530734633,
|
| 1939 |
+
"grad_norm": 0.3081928955592783,
|
| 1940 |
+
"learning_rate": 9.702755990556275e-05,
|
| 1941 |
+
"loss": 0.3522,
|
| 1942 |
+
"step": 275
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 0.41379310344827586,
|
| 1946 |
+
"grad_norm": 0.31027462279081486,
|
| 1947 |
+
"learning_rate": 9.699999701690133e-05,
|
| 1948 |
+
"loss": 0.3991,
|
| 1949 |
+
"step": 276
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 0.41529235382308843,
|
| 1953 |
+
"grad_norm": 0.30769321809153244,
|
| 1954 |
+
"learning_rate": 9.697231087622691e-05,
|
| 1955 |
+
"loss": 0.4251,
|
| 1956 |
+
"step": 277
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 0.41679160419790107,
|
| 1960 |
+
"grad_norm": 0.22008049482711858,
|
| 1961 |
+
"learning_rate": 9.694450155614319e-05,
|
| 1962 |
+
"loss": 0.274,
|
| 1963 |
+
"step": 278
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 0.41829085457271364,
|
| 1967 |
+
"grad_norm": 0.3051942730354458,
|
| 1968 |
+
"learning_rate": 9.691656912957685e-05,
|
| 1969 |
+
"loss": 0.3935,
|
| 1970 |
+
"step": 279
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.4197901049475262,
|
| 1974 |
+
"grad_norm": 0.2494353947223113,
|
| 1975 |
+
"learning_rate": 9.688851366977747e-05,
|
| 1976 |
+
"loss": 0.3325,
|
| 1977 |
+
"step": 280
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.42128935532233885,
|
| 1981 |
+
"grad_norm": 0.28093897530314915,
|
| 1982 |
+
"learning_rate": 9.686033525031719e-05,
|
| 1983 |
+
"loss": 0.3216,
|
| 1984 |
+
"step": 281
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 0.42278860569715143,
|
| 1988 |
+
"grad_norm": 0.20485653911930882,
|
| 1989 |
+
"learning_rate": 9.683203394509063e-05,
|
| 1990 |
+
"loss": 0.3121,
|
| 1991 |
+
"step": 282
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 0.424287856071964,
|
| 1995 |
+
"grad_norm": 0.2524923468239394,
|
| 1996 |
+
"learning_rate": 9.680360982831466e-05,
|
| 1997 |
+
"loss": 0.3625,
|
| 1998 |
+
"step": 283
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 0.4257871064467766,
|
| 2002 |
+
"grad_norm": 0.26133961109245535,
|
| 2003 |
+
"learning_rate": 9.677506297452823e-05,
|
| 2004 |
+
"loss": 0.3233,
|
| 2005 |
+
"step": 284
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 0.4272863568215892,
|
| 2009 |
+
"grad_norm": 0.22941502055388824,
|
| 2010 |
+
"learning_rate": 9.674639345859214e-05,
|
| 2011 |
+
"loss": 0.3371,
|
| 2012 |
+
"step": 285
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.4287856071964018,
|
| 2016 |
+
"grad_norm": 0.2280161291194043,
|
| 2017 |
+
"learning_rate": 9.671760135568881e-05,
|
| 2018 |
+
"loss": 0.322,
|
| 2019 |
+
"step": 286
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.4302848575712144,
|
| 2023 |
+
"grad_norm": 0.2611909815910577,
|
| 2024 |
+
"learning_rate": 9.668868674132224e-05,
|
| 2025 |
+
"loss": 0.3443,
|
| 2026 |
+
"step": 287
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 0.431784107946027,
|
| 2030 |
+
"grad_norm": 0.2420410455674395,
|
| 2031 |
+
"learning_rate": 9.665964969131757e-05,
|
| 2032 |
+
"loss": 0.3212,
|
| 2033 |
+
"step": 288
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 0.4332833583208396,
|
| 2037 |
+
"grad_norm": 0.21845173026055942,
|
| 2038 |
+
"learning_rate": 9.663049028182111e-05,
|
| 2039 |
+
"loss": 0.3937,
|
| 2040 |
+
"step": 289
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 0.43478260869565216,
|
| 2044 |
+
"grad_norm": 0.2729587145211045,
|
| 2045 |
+
"learning_rate": 9.660120858930003e-05,
|
| 2046 |
+
"loss": 0.3894,
|
| 2047 |
+
"step": 290
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 0.4362818590704648,
|
| 2051 |
+
"grad_norm": 0.29514998643897117,
|
| 2052 |
+
"learning_rate": 9.657180469054213e-05,
|
| 2053 |
+
"loss": 0.3725,
|
| 2054 |
+
"step": 291
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.43778110944527737,
|
| 2058 |
+
"grad_norm": 0.3635648533154266,
|
| 2059 |
+
"learning_rate": 9.654227866265569e-05,
|
| 2060 |
+
"loss": 0.3328,
|
| 2061 |
+
"step": 292
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.43928035982008995,
|
| 2065 |
+
"grad_norm": 0.26134711305689295,
|
| 2066 |
+
"learning_rate": 9.651263058306932e-05,
|
| 2067 |
+
"loss": 0.3759,
|
| 2068 |
+
"step": 293
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 0.4407796101949025,
|
| 2072 |
+
"grad_norm": 0.2428671238353619,
|
| 2073 |
+
"learning_rate": 9.648286052953161e-05,
|
| 2074 |
+
"loss": 0.2611,
|
| 2075 |
+
"step": 294
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 0.44227886056971516,
|
| 2079 |
+
"grad_norm": 0.2307583586352917,
|
| 2080 |
+
"learning_rate": 9.645296858011109e-05,
|
| 2081 |
+
"loss": 0.3202,
|
| 2082 |
+
"step": 295
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 0.44377811094452774,
|
| 2086 |
+
"grad_norm": 0.27390329996301765,
|
| 2087 |
+
"learning_rate": 9.642295481319588e-05,
|
| 2088 |
+
"loss": 0.3401,
|
| 2089 |
+
"step": 296
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 0.4452773613193403,
|
| 2093 |
+
"grad_norm": 0.3190025822824932,
|
| 2094 |
+
"learning_rate": 9.639281930749362e-05,
|
| 2095 |
+
"loss": 0.4227,
|
| 2096 |
+
"step": 297
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.44677661169415295,
|
| 2100 |
+
"grad_norm": 0.2598883344131087,
|
| 2101 |
+
"learning_rate": 9.636256214203115e-05,
|
| 2102 |
+
"loss": 0.2825,
|
| 2103 |
+
"step": 298
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.4482758620689655,
|
| 2107 |
+
"grad_norm": 0.2706626760124441,
|
| 2108 |
+
"learning_rate": 9.633218339615433e-05,
|
| 2109 |
+
"loss": 0.3393,
|
| 2110 |
+
"step": 299
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 0.4497751124437781,
|
| 2114 |
+
"grad_norm": 0.24831760559926722,
|
| 2115 |
+
"learning_rate": 9.63016831495279e-05,
|
| 2116 |
+
"loss": 0.2696,
|
| 2117 |
+
"step": 300
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 0.4512743628185907,
|
| 2121 |
+
"grad_norm": 0.2440264653259474,
|
| 2122 |
+
"learning_rate": 9.627106148213522e-05,
|
| 2123 |
+
"loss": 0.3319,
|
| 2124 |
+
"step": 301
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 0.4527736131934033,
|
| 2128 |
+
"grad_norm": 0.26598694710365517,
|
| 2129 |
+
"learning_rate": 9.624031847427801e-05,
|
| 2130 |
+
"loss": 0.3565,
|
| 2131 |
+
"step": 302
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 0.4542728635682159,
|
| 2135 |
+
"grad_norm": 0.24931600850650895,
|
| 2136 |
+
"learning_rate": 9.620945420657624e-05,
|
| 2137 |
+
"loss": 0.3273,
|
| 2138 |
+
"step": 303
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.45577211394302847,
|
| 2142 |
+
"grad_norm": 0.2338286567685855,
|
| 2143 |
+
"learning_rate": 9.617846875996785e-05,
|
| 2144 |
+
"loss": 0.3654,
|
| 2145 |
+
"step": 304
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.4572713643178411,
|
| 2149 |
+
"grad_norm": 0.2575110981356596,
|
| 2150 |
+
"learning_rate": 9.61473622157086e-05,
|
| 2151 |
+
"loss": 0.3288,
|
| 2152 |
+
"step": 305
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 0.4587706146926537,
|
| 2156 |
+
"grad_norm": 0.28935790088696406,
|
| 2157 |
+
"learning_rate": 9.61161346553717e-05,
|
| 2158 |
+
"loss": 0.3247,
|
| 2159 |
+
"step": 306
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 0.46026986506746626,
|
| 2163 |
+
"grad_norm": 0.2774321646396522,
|
| 2164 |
+
"learning_rate": 9.608478616084784e-05,
|
| 2165 |
+
"loss": 0.3503,
|
| 2166 |
+
"step": 307
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 0.4617691154422789,
|
| 2170 |
+
"grad_norm": 0.2413752022515758,
|
| 2171 |
+
"learning_rate": 9.605331681434477e-05,
|
| 2172 |
+
"loss": 0.2821,
|
| 2173 |
+
"step": 308
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 0.46326836581709147,
|
| 2177 |
+
"grad_norm": 0.28191456971423773,
|
| 2178 |
+
"learning_rate": 9.602172669838721e-05,
|
| 2179 |
+
"loss": 0.3564,
|
| 2180 |
+
"step": 309
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.46476761619190404,
|
| 2184 |
+
"grad_norm": 0.284058411770928,
|
| 2185 |
+
"learning_rate": 9.599001589581653e-05,
|
| 2186 |
+
"loss": 0.3011,
|
| 2187 |
+
"step": 310
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.4662668665667166,
|
| 2191 |
+
"grad_norm": 0.22117702063027717,
|
| 2192 |
+
"learning_rate": 9.595818448979061e-05,
|
| 2193 |
+
"loss": 0.2999,
|
| 2194 |
+
"step": 311
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 0.46776611694152925,
|
| 2198 |
+
"grad_norm": 0.29800109798421304,
|
| 2199 |
+
"learning_rate": 9.592623256378364e-05,
|
| 2200 |
+
"loss": 0.4059,
|
| 2201 |
+
"step": 312
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 0.46926536731634183,
|
| 2205 |
+
"grad_norm": 0.2615376129504821,
|
| 2206 |
+
"learning_rate": 9.589416020158578e-05,
|
| 2207 |
+
"loss": 0.3139,
|
| 2208 |
+
"step": 313
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 0.4707646176911544,
|
| 2212 |
+
"grad_norm": 0.2936529105437823,
|
| 2213 |
+
"learning_rate": 9.586196748730305e-05,
|
| 2214 |
+
"loss": 0.3251,
|
| 2215 |
+
"step": 314
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 0.47226386806596704,
|
| 2219 |
+
"grad_norm": 0.266468483705676,
|
| 2220 |
+
"learning_rate": 9.582965450535715e-05,
|
| 2221 |
+
"loss": 0.4037,
|
| 2222 |
+
"step": 315
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 0.4737631184407796,
|
| 2226 |
+
"grad_norm": 0.24230764465235774,
|
| 2227 |
+
"learning_rate": 9.579722134048506e-05,
|
| 2228 |
+
"loss": 0.3296,
|
| 2229 |
+
"step": 316
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 0.4752623688155922,
|
| 2233 |
+
"grad_norm": 0.340728401615647,
|
| 2234 |
+
"learning_rate": 9.576466807773899e-05,
|
| 2235 |
+
"loss": 0.3957,
|
| 2236 |
+
"step": 317
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 0.4767616191904048,
|
| 2240 |
+
"grad_norm": 0.2349979259521195,
|
| 2241 |
+
"learning_rate": 9.573199480248606e-05,
|
| 2242 |
+
"loss": 0.2905,
|
| 2243 |
+
"step": 318
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 0.4782608695652174,
|
| 2247 |
+
"grad_norm": 0.2645057636612975,
|
| 2248 |
+
"learning_rate": 9.569920160040815e-05,
|
| 2249 |
+
"loss": 0.3211,
|
| 2250 |
+
"step": 319
|
| 2251 |
+
},
|
| 2252 |
+
{
|
| 2253 |
+
"epoch": 0.47976011994003,
|
| 2254 |
+
"grad_norm": 0.3352556160783962,
|
| 2255 |
+
"learning_rate": 9.56662885575016e-05,
|
| 2256 |
+
"loss": 0.3847,
|
| 2257 |
+
"step": 320
|
| 2258 |
+
},
|
| 2259 |
+
{
|
| 2260 |
+
"epoch": 0.48125937031484256,
|
| 2261 |
+
"grad_norm": 0.26527957662237917,
|
| 2262 |
+
"learning_rate": 9.563325576007701e-05,
|
| 2263 |
+
"loss": 0.3904,
|
| 2264 |
+
"step": 321
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 0.4827586206896552,
|
| 2268 |
+
"grad_norm": 0.31309830682681533,
|
| 2269 |
+
"learning_rate": 9.560010329475906e-05,
|
| 2270 |
+
"loss": 0.3364,
|
| 2271 |
+
"step": 322
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 0.48425787106446777,
|
| 2275 |
+
"grad_norm": 0.2710524175789773,
|
| 2276 |
+
"learning_rate": 9.556683124848625e-05,
|
| 2277 |
+
"loss": 0.3407,
|
| 2278 |
+
"step": 323
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"epoch": 0.48575712143928035,
|
| 2282 |
+
"grad_norm": 0.24537581603658395,
|
| 2283 |
+
"learning_rate": 9.553343970851059e-05,
|
| 2284 |
+
"loss": 0.2852,
|
| 2285 |
+
"step": 324
|
| 2286 |
+
},
|
| 2287 |
+
{
|
| 2288 |
+
"epoch": 0.487256371814093,
|
| 2289 |
+
"grad_norm": 0.32677142363843803,
|
| 2290 |
+
"learning_rate": 9.549992876239753e-05,
|
| 2291 |
+
"loss": 0.3471,
|
| 2292 |
+
"step": 325
|
| 2293 |
+
},
|
| 2294 |
+
{
|
| 2295 |
+
"epoch": 0.48875562218890556,
|
| 2296 |
+
"grad_norm": 0.2556056612640656,
|
| 2297 |
+
"learning_rate": 9.546629849802562e-05,
|
| 2298 |
+
"loss": 0.2887,
|
| 2299 |
+
"step": 326
|
| 2300 |
+
},
|
| 2301 |
+
{
|
| 2302 |
+
"epoch": 0.49025487256371814,
|
| 2303 |
+
"grad_norm": 0.29207206322173274,
|
| 2304 |
+
"learning_rate": 9.543254900358629e-05,
|
| 2305 |
+
"loss": 0.4087,
|
| 2306 |
+
"step": 327
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 0.4917541229385307,
|
| 2310 |
+
"grad_norm": 0.2775712015290828,
|
| 2311 |
+
"learning_rate": 9.539868036758368e-05,
|
| 2312 |
+
"loss": 0.3968,
|
| 2313 |
+
"step": 328
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 0.49325337331334335,
|
| 2317 |
+
"grad_norm": 0.26600103017143895,
|
| 2318 |
+
"learning_rate": 9.536469267883433e-05,
|
| 2319 |
+
"loss": 0.3577,
|
| 2320 |
+
"step": 329
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"epoch": 0.4947526236881559,
|
| 2324 |
+
"grad_norm": 0.2701688757517727,
|
| 2325 |
+
"learning_rate": 9.533058602646696e-05,
|
| 2326 |
+
"loss": 0.3859,
|
| 2327 |
+
"step": 330
|
| 2328 |
+
},
|
| 2329 |
+
{
|
| 2330 |
+
"epoch": 0.4962518740629685,
|
| 2331 |
+
"grad_norm": 0.2788155427678552,
|
| 2332 |
+
"learning_rate": 9.529636049992234e-05,
|
| 2333 |
+
"loss": 0.3405,
|
| 2334 |
+
"step": 331
|
| 2335 |
+
},
|
| 2336 |
+
{
|
| 2337 |
+
"epoch": 0.49775112443778113,
|
| 2338 |
+
"grad_norm": 0.2781766465181338,
|
| 2339 |
+
"learning_rate": 9.526201618895291e-05,
|
| 2340 |
+
"loss": 0.3477,
|
| 2341 |
+
"step": 332
|
| 2342 |
+
},
|
| 2343 |
+
{
|
| 2344 |
+
"epoch": 0.4992503748125937,
|
| 2345 |
+
"grad_norm": 0.2464135283146033,
|
| 2346 |
+
"learning_rate": 9.52275531836226e-05,
|
| 2347 |
+
"loss": 0.32,
|
| 2348 |
+
"step": 333
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 0.5007496251874063,
|
| 2352 |
+
"grad_norm": 0.3056198636651611,
|
| 2353 |
+
"learning_rate": 9.519297157430665e-05,
|
| 2354 |
+
"loss": 0.3278,
|
| 2355 |
+
"step": 334
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 0.5022488755622189,
|
| 2359 |
+
"grad_norm": 0.25415158306661245,
|
| 2360 |
+
"learning_rate": 9.515827145169127e-05,
|
| 2361 |
+
"loss": 0.3504,
|
| 2362 |
+
"step": 335
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"epoch": 0.5037481259370314,
|
| 2366 |
+
"grad_norm": 0.2603363481884891,
|
| 2367 |
+
"learning_rate": 9.51234529067735e-05,
|
| 2368 |
+
"loss": 0.3473,
|
| 2369 |
+
"step": 336
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 0.5052473763118441,
|
| 2373 |
+
"grad_norm": 0.30403967173063684,
|
| 2374 |
+
"learning_rate": 9.508851603086093e-05,
|
| 2375 |
+
"loss": 0.4433,
|
| 2376 |
+
"step": 337
|
| 2377 |
+
},
|
| 2378 |
+
{
|
| 2379 |
+
"epoch": 0.5067466266866567,
|
| 2380 |
+
"grad_norm": 0.26939763348535367,
|
| 2381 |
+
"learning_rate": 9.505346091557143e-05,
|
| 2382 |
+
"loss": 0.3103,
|
| 2383 |
+
"step": 338
|
| 2384 |
+
},
|
| 2385 |
+
{
|
| 2386 |
+
"epoch": 0.5082458770614693,
|
| 2387 |
+
"grad_norm": 0.267724719821623,
|
| 2388 |
+
"learning_rate": 9.501828765283295e-05,
|
| 2389 |
+
"loss": 0.3022,
|
| 2390 |
+
"step": 339
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 0.5097451274362819,
|
| 2394 |
+
"grad_norm": 0.3407824430683693,
|
| 2395 |
+
"learning_rate": 9.498299633488328e-05,
|
| 2396 |
+
"loss": 0.3032,
|
| 2397 |
+
"step": 340
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 0.5112443778110944,
|
| 2401 |
+
"grad_norm": 0.3104505713027564,
|
| 2402 |
+
"learning_rate": 9.494758705426978e-05,
|
| 2403 |
+
"loss": 0.4214,
|
| 2404 |
+
"step": 341
|
| 2405 |
+
},
|
| 2406 |
+
{
|
| 2407 |
+
"epoch": 0.512743628185907,
|
| 2408 |
+
"grad_norm": 0.26799577624453275,
|
| 2409 |
+
"learning_rate": 9.491205990384915e-05,
|
| 2410 |
+
"loss": 0.3558,
|
| 2411 |
+
"step": 342
|
| 2412 |
+
},
|
| 2413 |
+
{
|
| 2414 |
+
"epoch": 0.5142428785607196,
|
| 2415 |
+
"grad_norm": 0.31884209355865095,
|
| 2416 |
+
"learning_rate": 9.487641497678723e-05,
|
| 2417 |
+
"loss": 0.283,
|
| 2418 |
+
"step": 343
|
| 2419 |
+
},
|
| 2420 |
+
{
|
| 2421 |
+
"epoch": 0.5157421289355323,
|
| 2422 |
+
"grad_norm": 0.25610524929335116,
|
| 2423 |
+
"learning_rate": 9.484065236655866e-05,
|
| 2424 |
+
"loss": 0.3559,
|
| 2425 |
+
"step": 344
|
| 2426 |
+
},
|
| 2427 |
+
{
|
| 2428 |
+
"epoch": 0.5172413793103449,
|
| 2429 |
+
"grad_norm": 0.27322281488042166,
|
| 2430 |
+
"learning_rate": 9.480477216694673e-05,
|
| 2431 |
+
"loss": 0.3612,
|
| 2432 |
+
"step": 345
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 0.5187406296851574,
|
| 2436 |
+
"grad_norm": 0.3626964747600608,
|
| 2437 |
+
"learning_rate": 9.476877447204308e-05,
|
| 2438 |
+
"loss": 0.4505,
|
| 2439 |
+
"step": 346
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 0.52023988005997,
|
| 2443 |
+
"grad_norm": 0.27115902974686,
|
| 2444 |
+
"learning_rate": 9.473265937624746e-05,
|
| 2445 |
+
"loss": 0.3331,
|
| 2446 |
+
"step": 347
|
| 2447 |
+
},
|
| 2448 |
+
{
|
| 2449 |
+
"epoch": 0.5217391304347826,
|
| 2450 |
+
"grad_norm": 0.2911124105978724,
|
| 2451 |
+
"learning_rate": 9.469642697426751e-05,
|
| 2452 |
+
"loss": 0.3335,
|
| 2453 |
+
"step": 348
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"epoch": 0.5232383808095952,
|
| 2457 |
+
"grad_norm": 0.2630412298342982,
|
| 2458 |
+
"learning_rate": 9.466007736111847e-05,
|
| 2459 |
+
"loss": 0.3523,
|
| 2460 |
+
"step": 349
|
| 2461 |
+
},
|
| 2462 |
+
{
|
| 2463 |
+
"epoch": 0.5247376311844077,
|
| 2464 |
+
"grad_norm": 0.3021916096793187,
|
| 2465 |
+
"learning_rate": 9.462361063212296e-05,
|
| 2466 |
+
"loss": 0.3385,
|
| 2467 |
+
"step": 350
|
| 2468 |
+
},
|
| 2469 |
+
{
|
| 2470 |
+
"epoch": 0.5262368815592204,
|
| 2471 |
+
"grad_norm": 0.26102211012329185,
|
| 2472 |
+
"learning_rate": 9.458702688291073e-05,
|
| 2473 |
+
"loss": 0.3887,
|
| 2474 |
+
"step": 351
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 0.527736131934033,
|
| 2478 |
+
"grad_norm": 0.31331672829420604,
|
| 2479 |
+
"learning_rate": 9.45503262094184e-05,
|
| 2480 |
+
"loss": 0.3808,
|
| 2481 |
+
"step": 352
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 0.5292353823088456,
|
| 2485 |
+
"grad_norm": 0.3395937475143066,
|
| 2486 |
+
"learning_rate": 9.45135087078892e-05,
|
| 2487 |
+
"loss": 0.3929,
|
| 2488 |
+
"step": 353
|
| 2489 |
+
},
|
| 2490 |
+
{
|
| 2491 |
+
"epoch": 0.5307346326836582,
|
| 2492 |
+
"grad_norm": 0.313000642060411,
|
| 2493 |
+
"learning_rate": 9.447657447487276e-05,
|
| 2494 |
+
"loss": 0.3232,
|
| 2495 |
+
"step": 354
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 0.5322338830584707,
|
| 2499 |
+
"grad_norm": 0.2569177298354711,
|
| 2500 |
+
"learning_rate": 9.443952360722477e-05,
|
| 2501 |
+
"loss": 0.3375,
|
| 2502 |
+
"step": 355
|
| 2503 |
+
},
|
| 2504 |
+
{
|
| 2505 |
+
"epoch": 0.5337331334332833,
|
| 2506 |
+
"grad_norm": 0.298625266629892,
|
| 2507 |
+
"learning_rate": 9.440235620210683e-05,
|
| 2508 |
+
"loss": 0.3221,
|
| 2509 |
+
"step": 356
|
| 2510 |
+
},
|
| 2511 |
+
{
|
| 2512 |
+
"epoch": 0.5352323838080959,
|
| 2513 |
+
"grad_norm": 0.28339542679715557,
|
| 2514 |
+
"learning_rate": 9.436507235698612e-05,
|
| 2515 |
+
"loss": 0.3809,
|
| 2516 |
+
"step": 357
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 0.5367316341829086,
|
| 2520 |
+
"grad_norm": 0.23099966195777122,
|
| 2521 |
+
"learning_rate": 9.432767216963517e-05,
|
| 2522 |
+
"loss": 0.3158,
|
| 2523 |
+
"step": 358
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 0.5382308845577212,
|
| 2527 |
+
"grad_norm": 0.2033821064332453,
|
| 2528 |
+
"learning_rate": 9.429015573813163e-05,
|
| 2529 |
+
"loss": 0.3353,
|
| 2530 |
+
"step": 359
|
| 2531 |
+
},
|
| 2532 |
+
{
|
| 2533 |
+
"epoch": 0.5397301349325337,
|
| 2534 |
+
"grad_norm": 0.24785981271292937,
|
| 2535 |
+
"learning_rate": 9.425252316085796e-05,
|
| 2536 |
+
"loss": 0.2491,
|
| 2537 |
+
"step": 360
|
| 2538 |
+
},
|
| 2539 |
+
{
|
| 2540 |
+
"epoch": 0.5412293853073463,
|
| 2541 |
+
"grad_norm": 0.29083638154911723,
|
| 2542 |
+
"learning_rate": 9.421477453650118e-05,
|
| 2543 |
+
"loss": 0.4223,
|
| 2544 |
+
"step": 361
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"epoch": 0.5427286356821589,
|
| 2548 |
+
"grad_norm": 0.21257292314827547,
|
| 2549 |
+
"learning_rate": 9.41769099640527e-05,
|
| 2550 |
+
"loss": 0.2786,
|
| 2551 |
+
"step": 362
|
| 2552 |
+
},
|
| 2553 |
+
{
|
| 2554 |
+
"epoch": 0.5442278860569715,
|
| 2555 |
+
"grad_norm": 0.36509923092260005,
|
| 2556 |
+
"learning_rate": 9.413892954280792e-05,
|
| 2557 |
+
"loss": 0.3616,
|
| 2558 |
+
"step": 363
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 0.545727136431784,
|
| 2562 |
+
"grad_norm": 0.2957566985927822,
|
| 2563 |
+
"learning_rate": 9.410083337236608e-05,
|
| 2564 |
+
"loss": 0.453,
|
| 2565 |
+
"step": 364
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 0.5472263868065967,
|
| 2569 |
+
"grad_norm": 0.2691318840584187,
|
| 2570 |
+
"learning_rate": 9.406262155262994e-05,
|
| 2571 |
+
"loss": 0.3754,
|
| 2572 |
+
"step": 365
|
| 2573 |
+
},
|
| 2574 |
+
{
|
| 2575 |
+
"epoch": 0.5487256371814093,
|
| 2576 |
+
"grad_norm": 0.25149904950813456,
|
| 2577 |
+
"learning_rate": 9.402429418380554e-05,
|
| 2578 |
+
"loss": 0.323,
|
| 2579 |
+
"step": 366
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 0.5502248875562219,
|
| 2583 |
+
"grad_norm": 0.2840588986769098,
|
| 2584 |
+
"learning_rate": 9.398585136640194e-05,
|
| 2585 |
+
"loss": 0.4011,
|
| 2586 |
+
"step": 367
|
| 2587 |
+
},
|
| 2588 |
+
{
|
| 2589 |
+
"epoch": 0.5517241379310345,
|
| 2590 |
+
"grad_norm": 0.2564982569670918,
|
| 2591 |
+
"learning_rate": 9.394729320123095e-05,
|
| 2592 |
+
"loss": 0.3975,
|
| 2593 |
+
"step": 368
|
| 2594 |
+
},
|
| 2595 |
+
{
|
| 2596 |
+
"epoch": 0.553223388305847,
|
| 2597 |
+
"grad_norm": 0.27983839424012363,
|
| 2598 |
+
"learning_rate": 9.390861978940686e-05,
|
| 2599 |
+
"loss": 0.2853,
|
| 2600 |
+
"step": 369
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 0.5547226386806596,
|
| 2604 |
+
"grad_norm": 0.28846318704589047,
|
| 2605 |
+
"learning_rate": 9.386983123234618e-05,
|
| 2606 |
+
"loss": 0.3586,
|
| 2607 |
+
"step": 370
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 0.5562218890554723,
|
| 2611 |
+
"grad_norm": 0.2878974141066758,
|
| 2612 |
+
"learning_rate": 9.38309276317674e-05,
|
| 2613 |
+
"loss": 0.3436,
|
| 2614 |
+
"step": 371
|
| 2615 |
+
},
|
| 2616 |
+
{
|
| 2617 |
+
"epoch": 0.5577211394302849,
|
| 2618 |
+
"grad_norm": 0.3165010840457768,
|
| 2619 |
+
"learning_rate": 9.379190908969064e-05,
|
| 2620 |
+
"loss": 0.4134,
|
| 2621 |
+
"step": 372
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 0.5592203898050975,
|
| 2625 |
+
"grad_norm": 0.29437989979526274,
|
| 2626 |
+
"learning_rate": 9.37527757084375e-05,
|
| 2627 |
+
"loss": 0.4321,
|
| 2628 |
+
"step": 373
|
| 2629 |
+
},
|
| 2630 |
+
{
|
| 2631 |
+
"epoch": 0.56071964017991,
|
| 2632 |
+
"grad_norm": 0.23707887450134235,
|
| 2633 |
+
"learning_rate": 9.37135275906307e-05,
|
| 2634 |
+
"loss": 0.2919,
|
| 2635 |
+
"step": 374
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"epoch": 0.5622188905547226,
|
| 2639 |
+
"grad_norm": 0.26492722235239113,
|
| 2640 |
+
"learning_rate": 9.367416483919387e-05,
|
| 2641 |
+
"loss": 0.3595,
|
| 2642 |
+
"step": 375
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 0.5637181409295352,
|
| 2646 |
+
"grad_norm": 0.3278394329102156,
|
| 2647 |
+
"learning_rate": 9.363468755735123e-05,
|
| 2648 |
+
"loss": 0.4638,
|
| 2649 |
+
"step": 376
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 0.5652173913043478,
|
| 2653 |
+
"grad_norm": 0.274302845936504,
|
| 2654 |
+
"learning_rate": 9.359509584862736e-05,
|
| 2655 |
+
"loss": 0.3757,
|
| 2656 |
+
"step": 377
|
| 2657 |
+
},
|
| 2658 |
+
{
|
| 2659 |
+
"epoch": 0.5667166416791605,
|
| 2660 |
+
"grad_norm": 0.24825772185244388,
|
| 2661 |
+
"learning_rate": 9.355538981684687e-05,
|
| 2662 |
+
"loss": 0.3122,
|
| 2663 |
+
"step": 378
|
| 2664 |
+
},
|
| 2665 |
+
{
|
| 2666 |
+
"epoch": 0.568215892053973,
|
| 2667 |
+
"grad_norm": 0.28724839077128644,
|
| 2668 |
+
"learning_rate": 9.351556956613423e-05,
|
| 2669 |
+
"loss": 0.3233,
|
| 2670 |
+
"step": 379
|
| 2671 |
+
},
|
| 2672 |
+
{
|
| 2673 |
+
"epoch": 0.5697151424287856,
|
| 2674 |
+
"grad_norm": 0.24621764327015722,
|
| 2675 |
+
"learning_rate": 9.347563520091337e-05,
|
| 2676 |
+
"loss": 0.3305,
|
| 2677 |
+
"step": 380
|
| 2678 |
+
},
|
| 2679 |
+
{
|
| 2680 |
+
"epoch": 0.5712143928035982,
|
| 2681 |
+
"grad_norm": 0.2522265573154381,
|
| 2682 |
+
"learning_rate": 9.343558682590756e-05,
|
| 2683 |
+
"loss": 0.3637,
|
| 2684 |
+
"step": 381
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 0.5727136431784108,
|
| 2688 |
+
"grad_norm": 0.32631779983370734,
|
| 2689 |
+
"learning_rate": 9.339542454613895e-05,
|
| 2690 |
+
"loss": 0.3284,
|
| 2691 |
+
"step": 382
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 0.5742128935532234,
|
| 2695 |
+
"grad_norm": 0.2346578706532781,
|
| 2696 |
+
"learning_rate": 9.335514846692845e-05,
|
| 2697 |
+
"loss": 0.3684,
|
| 2698 |
+
"step": 383
|
| 2699 |
+
},
|
| 2700 |
+
{
|
| 2701 |
+
"epoch": 0.5757121439280359,
|
| 2702 |
+
"grad_norm": 0.246495791651111,
|
| 2703 |
+
"learning_rate": 9.331475869389538e-05,
|
| 2704 |
+
"loss": 0.3512,
|
| 2705 |
+
"step": 384
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 0.5772113943028486,
|
| 2709 |
+
"grad_norm": 0.2553654567157137,
|
| 2710 |
+
"learning_rate": 9.327425533295724e-05,
|
| 2711 |
+
"loss": 0.3332,
|
| 2712 |
+
"step": 385
|
| 2713 |
+
},
|
| 2714 |
+
{
|
| 2715 |
+
"epoch": 0.5787106446776612,
|
| 2716 |
+
"grad_norm": 0.24218388437087565,
|
| 2717 |
+
"learning_rate": 9.323363849032933e-05,
|
| 2718 |
+
"loss": 0.3537,
|
| 2719 |
+
"step": 386
|
| 2720 |
+
},
|
| 2721 |
+
{
|
| 2722 |
+
"epoch": 0.5802098950524738,
|
| 2723 |
+
"grad_norm": 0.24206819796148848,
|
| 2724 |
+
"learning_rate": 9.31929082725246e-05,
|
| 2725 |
+
"loss": 0.3135,
|
| 2726 |
+
"step": 387
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 0.5817091454272864,
|
| 2730 |
+
"grad_norm": 0.21920989707665034,
|
| 2731 |
+
"learning_rate": 9.31520647863533e-05,
|
| 2732 |
+
"loss": 0.2573,
|
| 2733 |
+
"step": 388
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 0.5832083958020989,
|
| 2737 |
+
"grad_norm": 0.26205762124974163,
|
| 2738 |
+
"learning_rate": 9.31111081389227e-05,
|
| 2739 |
+
"loss": 0.3242,
|
| 2740 |
+
"step": 389
|
| 2741 |
+
},
|
| 2742 |
+
{
|
| 2743 |
+
"epoch": 0.5847076461769115,
|
| 2744 |
+
"grad_norm": 0.2933602247572226,
|
| 2745 |
+
"learning_rate": 9.307003843763686e-05,
|
| 2746 |
+
"loss": 0.3434,
|
| 2747 |
+
"step": 390
|
| 2748 |
+
},
|
| 2749 |
+
{
|
| 2750 |
+
"epoch": 0.5862068965517241,
|
| 2751 |
+
"grad_norm": 0.3440282968418603,
|
| 2752 |
+
"learning_rate": 9.302885579019627e-05,
|
| 2753 |
+
"loss": 0.3393,
|
| 2754 |
+
"step": 391
|
| 2755 |
+
},
|
| 2756 |
+
{
|
| 2757 |
+
"epoch": 0.5877061469265368,
|
| 2758 |
+
"grad_norm": 0.24817486584899429,
|
| 2759 |
+
"learning_rate": 9.298756030459761e-05,
|
| 2760 |
+
"loss": 0.3126,
|
| 2761 |
+
"step": 392
|
| 2762 |
+
},
|
| 2763 |
+
{
|
| 2764 |
+
"epoch": 0.5892053973013494,
|
| 2765 |
+
"grad_norm": 0.2927645338355415,
|
| 2766 |
+
"learning_rate": 9.294615208913348e-05,
|
| 2767 |
+
"loss": 0.3573,
|
| 2768 |
+
"step": 393
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 0.5907046476761619,
|
| 2772 |
+
"grad_norm": 0.2849254547785852,
|
| 2773 |
+
"learning_rate": 9.290463125239213e-05,
|
| 2774 |
+
"loss": 0.2959,
|
| 2775 |
+
"step": 394
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 0.5922038980509745,
|
| 2779 |
+
"grad_norm": 0.2188112015794616,
|
| 2780 |
+
"learning_rate": 9.286299790325708e-05,
|
| 2781 |
+
"loss": 0.3355,
|
| 2782 |
+
"step": 395
|
| 2783 |
+
},
|
| 2784 |
+
{
|
| 2785 |
+
"epoch": 0.5937031484257871,
|
| 2786 |
+
"grad_norm": 0.3050559512694953,
|
| 2787 |
+
"learning_rate": 9.282125215090694e-05,
|
| 2788 |
+
"loss": 0.3129,
|
| 2789 |
+
"step": 396
|
| 2790 |
+
},
|
| 2791 |
+
{
|
| 2792 |
+
"epoch": 0.5952023988005997,
|
| 2793 |
+
"grad_norm": 0.272407011380095,
|
| 2794 |
+
"learning_rate": 9.277939410481507e-05,
|
| 2795 |
+
"loss": 0.302,
|
| 2796 |
+
"step": 397
|
| 2797 |
+
},
|
| 2798 |
+
{
|
| 2799 |
+
"epoch": 0.5967016491754122,
|
| 2800 |
+
"grad_norm": 0.3080176206091004,
|
| 2801 |
+
"learning_rate": 9.273742387474934e-05,
|
| 2802 |
+
"loss": 0.3836,
|
| 2803 |
+
"step": 398
|
| 2804 |
+
},
|
| 2805 |
+
{
|
| 2806 |
+
"epoch": 0.5982008995502249,
|
| 2807 |
+
"grad_norm": 0.23918167205305313,
|
| 2808 |
+
"learning_rate": 9.269534157077177e-05,
|
| 2809 |
+
"loss": 0.2855,
|
| 2810 |
+
"step": 399
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 0.5997001499250375,
|
| 2814 |
+
"grad_norm": 0.24438525396104838,
|
| 2815 |
+
"learning_rate": 9.265314730323829e-05,
|
| 2816 |
+
"loss": 0.3112,
|
| 2817 |
+
"step": 400
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 0.5997001499250375,
|
| 2821 |
+
"eval_loss": 0.3407685160636902,
|
| 2822 |
+
"eval_runtime": 9.3927,
|
| 2823 |
+
"eval_samples_per_second": 5.749,
|
| 2824 |
+
"eval_steps_per_second": 1.491,
|
| 2825 |
+
"step": 400
|
| 2826 |
+
},
|
| 2827 |
+
{
|
| 2828 |
+
"epoch": 0.6011994002998501,
|
| 2829 |
+
"grad_norm": 0.28086948255861754,
|
| 2830 |
+
"learning_rate": 9.261084118279847e-05,
|
| 2831 |
+
"loss": 0.3563,
|
| 2832 |
+
"step": 401
|
| 2833 |
+
},
|
| 2834 |
+
{
|
| 2835 |
+
"epoch": 0.6026986506746627,
|
| 2836 |
+
"grad_norm": 0.22935815273555676,
|
| 2837 |
+
"learning_rate": 9.256842332039518e-05,
|
| 2838 |
+
"loss": 0.3121,
|
| 2839 |
+
"step": 402
|
| 2840 |
+
},
|
| 2841 |
+
{
|
| 2842 |
+
"epoch": 0.6041979010494752,
|
| 2843 |
+
"grad_norm": 0.260216111143008,
|
| 2844 |
+
"learning_rate": 9.252589382726426e-05,
|
| 2845 |
+
"loss": 0.313,
|
| 2846 |
+
"step": 403
|
| 2847 |
+
},
|
| 2848 |
+
{
|
| 2849 |
+
"epoch": 0.6056971514242878,
|
| 2850 |
+
"grad_norm": 0.2935638547580935,
|
| 2851 |
+
"learning_rate": 9.248325281493444e-05,
|
| 2852 |
+
"loss": 0.2804,
|
| 2853 |
+
"step": 404
|
| 2854 |
+
},
|
| 2855 |
+
{
|
| 2856 |
+
"epoch": 0.6071964017991005,
|
| 2857 |
+
"grad_norm": 0.27940879478367364,
|
| 2858 |
+
"learning_rate": 9.244050039522672e-05,
|
| 2859 |
+
"loss": 0.3349,
|
| 2860 |
+
"step": 405
|
| 2861 |
+
},
|
| 2862 |
+
{
|
| 2863 |
+
"epoch": 0.6086956521739131,
|
| 2864 |
+
"grad_norm": 0.29625175851309354,
|
| 2865 |
+
"learning_rate": 9.239763668025439e-05,
|
| 2866 |
+
"loss": 0.3378,
|
| 2867 |
+
"step": 406
|
| 2868 |
+
},
|
| 2869 |
+
{
|
| 2870 |
+
"epoch": 0.6101949025487257,
|
| 2871 |
+
"grad_norm": 0.31688242986748677,
|
| 2872 |
+
"learning_rate": 9.235466178242254e-05,
|
| 2873 |
+
"loss": 0.3666,
|
| 2874 |
+
"step": 407
|
| 2875 |
+
},
|
| 2876 |
+
{
|
| 2877 |
+
"epoch": 0.6116941529235382,
|
| 2878 |
+
"grad_norm": 0.31656653083486364,
|
| 2879 |
+
"learning_rate": 9.231157581442781e-05,
|
| 2880 |
+
"loss": 0.3644,
|
| 2881 |
+
"step": 408
|
| 2882 |
+
},
|
| 2883 |
+
{
|
| 2884 |
+
"epoch": 0.6131934032983508,
|
| 2885 |
+
"grad_norm": 0.24143659030082,
|
| 2886 |
+
"learning_rate": 9.226837888925813e-05,
|
| 2887 |
+
"loss": 0.3533,
|
| 2888 |
+
"step": 409
|
| 2889 |
+
},
|
| 2890 |
+
{
|
| 2891 |
+
"epoch": 0.6146926536731634,
|
| 2892 |
+
"grad_norm": 0.26124787091307305,
|
| 2893 |
+
"learning_rate": 9.222507112019242e-05,
|
| 2894 |
+
"loss": 0.3271,
|
| 2895 |
+
"step": 410
|
| 2896 |
+
},
|
| 2897 |
+
{
|
| 2898 |
+
"epoch": 0.616191904047976,
|
| 2899 |
+
"grad_norm": 0.31324865522778583,
|
| 2900 |
+
"learning_rate": 9.218165262080023e-05,
|
| 2901 |
+
"loss": 0.3428,
|
| 2902 |
+
"step": 411
|
| 2903 |
+
},
|
| 2904 |
+
{
|
| 2905 |
+
"epoch": 0.6176911544227887,
|
| 2906 |
+
"grad_norm": 0.3652798207487008,
|
| 2907 |
+
"learning_rate": 9.213812350494153e-05,
|
| 2908 |
+
"loss": 0.3388,
|
| 2909 |
+
"step": 412
|
| 2910 |
+
},
|
| 2911 |
+
{
|
| 2912 |
+
"epoch": 0.6191904047976012,
|
| 2913 |
+
"grad_norm": 0.28885436126771186,
|
| 2914 |
+
"learning_rate": 9.209448388676635e-05,
|
| 2915 |
+
"loss": 0.3549,
|
| 2916 |
+
"step": 413
|
| 2917 |
+
},
|
| 2918 |
+
{
|
| 2919 |
+
"epoch": 0.6206896551724138,
|
| 2920 |
+
"grad_norm": 0.24086819662287953,
|
| 2921 |
+
"learning_rate": 9.20507338807145e-05,
|
| 2922 |
+
"loss": 0.339,
|
| 2923 |
+
"step": 414
|
| 2924 |
+
},
|
| 2925 |
+
{
|
| 2926 |
+
"epoch": 0.6221889055472264,
|
| 2927 |
+
"grad_norm": 0.3069971378954431,
|
| 2928 |
+
"learning_rate": 9.200687360151528e-05,
|
| 2929 |
+
"loss": 0.2951,
|
| 2930 |
+
"step": 415
|
| 2931 |
+
},
|
| 2932 |
+
{
|
| 2933 |
+
"epoch": 0.623688155922039,
|
| 2934 |
+
"grad_norm": 0.2746888981608114,
|
| 2935 |
+
"learning_rate": 9.196290316418711e-05,
|
| 2936 |
+
"loss": 0.3258,
|
| 2937 |
+
"step": 416
|
| 2938 |
+
},
|
| 2939 |
+
{
|
| 2940 |
+
"epoch": 0.6251874062968515,
|
| 2941 |
+
"grad_norm": 0.2529325040400764,
|
| 2942 |
+
"learning_rate": 9.191882268403743e-05,
|
| 2943 |
+
"loss": 0.2876,
|
| 2944 |
+
"step": 417
|
| 2945 |
+
},
|
| 2946 |
+
{
|
| 2947 |
+
"epoch": 0.6266866566716641,
|
| 2948 |
+
"grad_norm": 0.2862769095319526,
|
| 2949 |
+
"learning_rate": 9.187463227666205e-05,
|
| 2950 |
+
"loss": 0.2936,
|
| 2951 |
+
"step": 418
|
| 2952 |
+
},
|
| 2953 |
+
{
|
| 2954 |
+
"epoch": 0.6281859070464768,
|
| 2955 |
+
"grad_norm": 0.2817150674471743,
|
| 2956 |
+
"learning_rate": 9.183033205794525e-05,
|
| 2957 |
+
"loss": 0.3294,
|
| 2958 |
+
"step": 419
|
| 2959 |
+
},
|
| 2960 |
+
{
|
| 2961 |
+
"epoch": 0.6296851574212894,
|
| 2962 |
+
"grad_norm": 0.2893136777786241,
|
| 2963 |
+
"learning_rate": 9.178592214405914e-05,
|
| 2964 |
+
"loss": 0.3312,
|
| 2965 |
+
"step": 420
|
| 2966 |
+
},
|
| 2967 |
+
{
|
| 2968 |
+
"epoch": 0.631184407796102,
|
| 2969 |
+
"grad_norm": 0.26929771941251335,
|
| 2970 |
+
"learning_rate": 9.174140265146356e-05,
|
| 2971 |
+
"loss": 0.3008,
|
| 2972 |
+
"step": 421
|
| 2973 |
+
},
|
| 2974 |
+
{
|
| 2975 |
+
"epoch": 0.6326836581709145,
|
| 2976 |
+
"grad_norm": 0.2868917422770835,
|
| 2977 |
+
"learning_rate": 9.16967736969057e-05,
|
| 2978 |
+
"loss": 0.3885,
|
| 2979 |
+
"step": 422
|
| 2980 |
+
},
|
| 2981 |
+
{
|
| 2982 |
+
"epoch": 0.6341829085457271,
|
| 2983 |
+
"grad_norm": 0.2885809245551549,
|
| 2984 |
+
"learning_rate": 9.165203539741976e-05,
|
| 2985 |
+
"loss": 0.2753,
|
| 2986 |
+
"step": 423
|
| 2987 |
+
},
|
| 2988 |
+
{
|
| 2989 |
+
"epoch": 0.6356821589205397,
|
| 2990 |
+
"grad_norm": 0.31004674562262013,
|
| 2991 |
+
"learning_rate": 9.160718787032674e-05,
|
| 2992 |
+
"loss": 0.3216,
|
| 2993 |
+
"step": 424
|
| 2994 |
+
},
|
| 2995 |
+
{
|
| 2996 |
+
"epoch": 0.6371814092953523,
|
| 2997 |
+
"grad_norm": 0.27639070167163965,
|
| 2998 |
+
"learning_rate": 9.156223123323405e-05,
|
| 2999 |
+
"loss": 0.337,
|
| 3000 |
+
"step": 425
|
| 3001 |
+
},
|
| 3002 |
+
{
|
| 3003 |
+
"epoch": 0.638680659670165,
|
| 3004 |
+
"grad_norm": 0.24277290762336287,
|
| 3005 |
+
"learning_rate": 9.15171656040352e-05,
|
| 3006 |
+
"loss": 0.2717,
|
| 3007 |
+
"step": 426
|
| 3008 |
+
},
|
| 3009 |
+
{
|
| 3010 |
+
"epoch": 0.6401799100449775,
|
| 3011 |
+
"grad_norm": 0.28040799206930017,
|
| 3012 |
+
"learning_rate": 9.147199110090959e-05,
|
| 3013 |
+
"loss": 0.2856,
|
| 3014 |
+
"step": 427
|
| 3015 |
+
},
|
| 3016 |
+
{
|
| 3017 |
+
"epoch": 0.6416791604197901,
|
| 3018 |
+
"grad_norm": 0.24438190494058687,
|
| 3019 |
+
"learning_rate": 9.142670784232207e-05,
|
| 3020 |
+
"loss": 0.3202,
|
| 3021 |
+
"step": 428
|
| 3022 |
+
},
|
| 3023 |
+
{
|
| 3024 |
+
"epoch": 0.6431784107946027,
|
| 3025 |
+
"grad_norm": 0.23933976786717923,
|
| 3026 |
+
"learning_rate": 9.13813159470227e-05,
|
| 3027 |
+
"loss": 0.2508,
|
| 3028 |
+
"step": 429
|
| 3029 |
+
},
|
| 3030 |
+
{
|
| 3031 |
+
"epoch": 0.6446776611694153,
|
| 3032 |
+
"grad_norm": 0.28109080164156414,
|
| 3033 |
+
"learning_rate": 9.133581553404644e-05,
|
| 3034 |
+
"loss": 0.3305,
|
| 3035 |
+
"step": 430
|
| 3036 |
+
},
|
| 3037 |
+
{
|
| 3038 |
+
"epoch": 0.6461769115442278,
|
| 3039 |
+
"grad_norm": 0.30768631307262345,
|
| 3040 |
+
"learning_rate": 9.129020672271283e-05,
|
| 3041 |
+
"loss": 0.3597,
|
| 3042 |
+
"step": 431
|
| 3043 |
+
},
|
| 3044 |
+
{
|
| 3045 |
+
"epoch": 0.6476761619190404,
|
| 3046 |
+
"grad_norm": 0.26591356505593744,
|
| 3047 |
+
"learning_rate": 9.124448963262565e-05,
|
| 3048 |
+
"loss": 0.3408,
|
| 3049 |
+
"step": 432
|
| 3050 |
+
},
|
| 3051 |
+
{
|
| 3052 |
+
"epoch": 0.6491754122938531,
|
| 3053 |
+
"grad_norm": 0.32694872042068657,
|
| 3054 |
+
"learning_rate": 9.119866438367263e-05,
|
| 3055 |
+
"loss": 0.3691,
|
| 3056 |
+
"step": 433
|
| 3057 |
+
},
|
| 3058 |
+
{
|
| 3059 |
+
"epoch": 0.6506746626686657,
|
| 3060 |
+
"grad_norm": 0.26660416233614764,
|
| 3061 |
+
"learning_rate": 9.115273109602516e-05,
|
| 3062 |
+
"loss": 0.3439,
|
| 3063 |
+
"step": 434
|
| 3064 |
+
},
|
| 3065 |
+
{
|
| 3066 |
+
"epoch": 0.6521739130434783,
|
| 3067 |
+
"grad_norm": 0.26328826374189573,
|
| 3068 |
+
"learning_rate": 9.110668989013791e-05,
|
| 3069 |
+
"loss": 0.3045,
|
| 3070 |
+
"step": 435
|
| 3071 |
+
},
|
| 3072 |
+
{
|
| 3073 |
+
"epoch": 0.6536731634182908,
|
| 3074 |
+
"grad_norm": 0.29335925103622074,
|
| 3075 |
+
"learning_rate": 9.10605408867486e-05,
|
| 3076 |
+
"loss": 0.3191,
|
| 3077 |
+
"step": 436
|
| 3078 |
+
},
|
| 3079 |
+
{
|
| 3080 |
+
"epoch": 0.6551724137931034,
|
| 3081 |
+
"grad_norm": 0.31652933052287996,
|
| 3082 |
+
"learning_rate": 9.101428420687759e-05,
|
| 3083 |
+
"loss": 0.3203,
|
| 3084 |
+
"step": 437
|
| 3085 |
+
},
|
| 3086 |
+
{
|
| 3087 |
+
"epoch": 0.656671664167916,
|
| 3088 |
+
"grad_norm": 0.2326421080227109,
|
| 3089 |
+
"learning_rate": 9.096791997182765e-05,
|
| 3090 |
+
"loss": 0.3212,
|
| 3091 |
+
"step": 438
|
| 3092 |
+
},
|
| 3093 |
+
{
|
| 3094 |
+
"epoch": 0.6581709145427287,
|
| 3095 |
+
"grad_norm": 0.30373914992832884,
|
| 3096 |
+
"learning_rate": 9.092144830318358e-05,
|
| 3097 |
+
"loss": 0.3929,
|
| 3098 |
+
"step": 439
|
| 3099 |
+
},
|
| 3100 |
+
{
|
| 3101 |
+
"epoch": 0.6596701649175413,
|
| 3102 |
+
"grad_norm": 0.227479352264213,
|
| 3103 |
+
"learning_rate": 9.08748693228119e-05,
|
| 3104 |
+
"loss": 0.2975,
|
| 3105 |
+
"step": 440
|
| 3106 |
+
},
|
| 3107 |
+
{
|
| 3108 |
+
"epoch": 0.6611694152923538,
|
| 3109 |
+
"grad_norm": 0.32345871664484027,
|
| 3110 |
+
"learning_rate": 9.082818315286055e-05,
|
| 3111 |
+
"loss": 0.3546,
|
| 3112 |
+
"step": 441
|
| 3113 |
+
},
|
| 3114 |
+
{
|
| 3115 |
+
"epoch": 0.6626686656671664,
|
| 3116 |
+
"grad_norm": 0.2834693925576374,
|
| 3117 |
+
"learning_rate": 9.07813899157586e-05,
|
| 3118 |
+
"loss": 0.353,
|
| 3119 |
+
"step": 442
|
| 3120 |
+
},
|
| 3121 |
+
{
|
| 3122 |
+
"epoch": 0.664167916041979,
|
| 3123 |
+
"grad_norm": 0.2500144651231018,
|
| 3124 |
+
"learning_rate": 9.073448973421582e-05,
|
| 3125 |
+
"loss": 0.2895,
|
| 3126 |
+
"step": 443
|
| 3127 |
+
},
|
| 3128 |
+
{
|
| 3129 |
+
"epoch": 0.6656671664167916,
|
| 3130 |
+
"grad_norm": 0.28489985439629356,
|
| 3131 |
+
"learning_rate": 9.068748273122249e-05,
|
| 3132 |
+
"loss": 0.3277,
|
| 3133 |
+
"step": 444
|
| 3134 |
+
},
|
| 3135 |
+
{
|
| 3136 |
+
"epoch": 0.6671664167916042,
|
| 3137 |
+
"grad_norm": 0.30259215341738166,
|
| 3138 |
+
"learning_rate": 9.0640369030049e-05,
|
| 3139 |
+
"loss": 0.3431,
|
| 3140 |
+
"step": 445
|
| 3141 |
+
},
|
| 3142 |
+
{
|
| 3143 |
+
"epoch": 0.6686656671664168,
|
| 3144 |
+
"grad_norm": 0.32367511355388184,
|
| 3145 |
+
"learning_rate": 9.059314875424553e-05,
|
| 3146 |
+
"loss": 0.3839,
|
| 3147 |
+
"step": 446
|
| 3148 |
+
},
|
| 3149 |
+
{
|
| 3150 |
+
"epoch": 0.6701649175412294,
|
| 3151 |
+
"grad_norm": 0.30859477200629365,
|
| 3152 |
+
"learning_rate": 9.054582202764175e-05,
|
| 3153 |
+
"loss": 0.4615,
|
| 3154 |
+
"step": 447
|
| 3155 |
+
},
|
| 3156 |
+
{
|
| 3157 |
+
"epoch": 0.671664167916042,
|
| 3158 |
+
"grad_norm": 0.29938499377624256,
|
| 3159 |
+
"learning_rate": 9.049838897434648e-05,
|
| 3160 |
+
"loss": 0.3154,
|
| 3161 |
+
"step": 448
|
| 3162 |
+
},
|
| 3163 |
+
{
|
| 3164 |
+
"epoch": 0.6731634182908546,
|
| 3165 |
+
"grad_norm": 0.27664303623411163,
|
| 3166 |
+
"learning_rate": 9.045084971874738e-05,
|
| 3167 |
+
"loss": 0.3022,
|
| 3168 |
+
"step": 449
|
| 3169 |
+
},
|
| 3170 |
+
{
|
| 3171 |
+
"epoch": 0.6746626686656672,
|
| 3172 |
+
"grad_norm": 0.22798315434848834,
|
| 3173 |
+
"learning_rate": 9.04032043855106e-05,
|
| 3174 |
+
"loss": 0.3253,
|
| 3175 |
+
"step": 450
|
| 3176 |
+
},
|
| 3177 |
+
{
|
| 3178 |
+
"epoch": 0.6761619190404797,
|
| 3179 |
+
"grad_norm": 0.23774577554676588,
|
| 3180 |
+
"learning_rate": 9.035545309958046e-05,
|
| 3181 |
+
"loss": 0.2812,
|
| 3182 |
+
"step": 451
|
| 3183 |
+
},
|
| 3184 |
+
{
|
| 3185 |
+
"epoch": 0.6776611694152923,
|
| 3186 |
+
"grad_norm": 0.2506771654678938,
|
| 3187 |
+
"learning_rate": 9.030759598617918e-05,
|
| 3188 |
+
"loss": 0.3571,
|
| 3189 |
+
"step": 452
|
| 3190 |
+
},
|
| 3191 |
+
{
|
| 3192 |
+
"epoch": 0.679160419790105,
|
| 3193 |
+
"grad_norm": 0.25762084720123335,
|
| 3194 |
+
"learning_rate": 9.025963317080641e-05,
|
| 3195 |
+
"loss": 0.3227,
|
| 3196 |
+
"step": 453
|
| 3197 |
+
},
|
| 3198 |
+
{
|
| 3199 |
+
"epoch": 0.6806596701649176,
|
| 3200 |
+
"grad_norm": 0.3014366864803227,
|
| 3201 |
+
"learning_rate": 9.021156477923909e-05,
|
| 3202 |
+
"loss": 0.3736,
|
| 3203 |
+
"step": 454
|
| 3204 |
+
},
|
| 3205 |
+
{
|
| 3206 |
+
"epoch": 0.6821589205397302,
|
| 3207 |
+
"grad_norm": 0.2228445980502147,
|
| 3208 |
+
"learning_rate": 9.016339093753093e-05,
|
| 3209 |
+
"loss": 0.3036,
|
| 3210 |
+
"step": 455
|
| 3211 |
+
},
|
| 3212 |
+
{
|
| 3213 |
+
"epoch": 0.6836581709145427,
|
| 3214 |
+
"grad_norm": 0.3401829022565116,
|
| 3215 |
+
"learning_rate": 9.011511177201225e-05,
|
| 3216 |
+
"loss": 0.3454,
|
| 3217 |
+
"step": 456
|
| 3218 |
+
},
|
| 3219 |
+
{
|
| 3220 |
+
"epoch": 0.6851574212893553,
|
| 3221 |
+
"grad_norm": 0.22934951098956732,
|
| 3222 |
+
"learning_rate": 9.006672740928952e-05,
|
| 3223 |
+
"loss": 0.2689,
|
| 3224 |
+
"step": 457
|
| 3225 |
+
},
|
| 3226 |
+
{
|
| 3227 |
+
"epoch": 0.6866566716641679,
|
| 3228 |
+
"grad_norm": 0.22478386258913607,
|
| 3229 |
+
"learning_rate": 9.001823797624506e-05,
|
| 3230 |
+
"loss": 0.3295,
|
| 3231 |
+
"step": 458
|
| 3232 |
+
},
|
| 3233 |
+
{
|
| 3234 |
+
"epoch": 0.6881559220389805,
|
| 3235 |
+
"grad_norm": 0.3526430665907978,
|
| 3236 |
+
"learning_rate": 8.99696436000368e-05,
|
| 3237 |
+
"loss": 0.3868,
|
| 3238 |
+
"step": 459
|
| 3239 |
+
},
|
| 3240 |
+
{
|
| 3241 |
+
"epoch": 0.6896551724137931,
|
| 3242 |
+
"grad_norm": 0.28621239134868454,
|
| 3243 |
+
"learning_rate": 8.992094440809782e-05,
|
| 3244 |
+
"loss": 0.3581,
|
| 3245 |
+
"step": 460
|
| 3246 |
+
},
|
| 3247 |
+
{
|
| 3248 |
+
"epoch": 0.6911544227886057,
|
| 3249 |
+
"grad_norm": 0.3363379390019984,
|
| 3250 |
+
"learning_rate": 8.987214052813604e-05,
|
| 3251 |
+
"loss": 0.4145,
|
| 3252 |
+
"step": 461
|
| 3253 |
+
},
|
| 3254 |
+
{
|
| 3255 |
+
"epoch": 0.6926536731634183,
|
| 3256 |
+
"grad_norm": 0.2351530418979157,
|
| 3257 |
+
"learning_rate": 8.982323208813399e-05,
|
| 3258 |
+
"loss": 0.2773,
|
| 3259 |
+
"step": 462
|
| 3260 |
+
},
|
| 3261 |
+
{
|
| 3262 |
+
"epoch": 0.6941529235382309,
|
| 3263 |
+
"grad_norm": 0.29565189621212185,
|
| 3264 |
+
"learning_rate": 8.977421921634832e-05,
|
| 3265 |
+
"loss": 0.4183,
|
| 3266 |
+
"step": 463
|
| 3267 |
+
},
|
| 3268 |
+
{
|
| 3269 |
+
"epoch": 0.6956521739130435,
|
| 3270 |
+
"grad_norm": 0.2788029853802518,
|
| 3271 |
+
"learning_rate": 8.972510204130958e-05,
|
| 3272 |
+
"loss": 0.2822,
|
| 3273 |
+
"step": 464
|
| 3274 |
+
},
|
| 3275 |
+
{
|
| 3276 |
+
"epoch": 0.697151424287856,
|
| 3277 |
+
"grad_norm": 0.3235950747830869,
|
| 3278 |
+
"learning_rate": 8.967588069182185e-05,
|
| 3279 |
+
"loss": 0.3815,
|
| 3280 |
+
"step": 465
|
| 3281 |
+
},
|
| 3282 |
+
{
|
| 3283 |
+
"epoch": 0.6986506746626686,
|
| 3284 |
+
"grad_norm": 0.28959339322420985,
|
| 3285 |
+
"learning_rate": 8.962655529696236e-05,
|
| 3286 |
+
"loss": 0.3335,
|
| 3287 |
+
"step": 466
|
| 3288 |
+
},
|
| 3289 |
+
{
|
| 3290 |
+
"epoch": 0.7001499250374813,
|
| 3291 |
+
"grad_norm": 0.3484195937705581,
|
| 3292 |
+
"learning_rate": 8.957712598608123e-05,
|
| 3293 |
+
"loss": 0.3882,
|
| 3294 |
+
"step": 467
|
| 3295 |
+
},
|
| 3296 |
+
{
|
| 3297 |
+
"epoch": 0.7016491754122939,
|
| 3298 |
+
"grad_norm": 0.22194351726641875,
|
| 3299 |
+
"learning_rate": 8.952759288880104e-05,
|
| 3300 |
+
"loss": 0.253,
|
| 3301 |
+
"step": 468
|
| 3302 |
+
},
|
| 3303 |
+
{
|
| 3304 |
+
"epoch": 0.7031484257871065,
|
| 3305 |
+
"grad_norm": 0.227874764604873,
|
| 3306 |
+
"learning_rate": 8.947795613501658e-05,
|
| 3307 |
+
"loss": 0.2461,
|
| 3308 |
+
"step": 469
|
| 3309 |
+
},
|
| 3310 |
+
{
|
| 3311 |
+
"epoch": 0.704647676161919,
|
| 3312 |
+
"grad_norm": 0.27048930273058597,
|
| 3313 |
+
"learning_rate": 8.942821585489445e-05,
|
| 3314 |
+
"loss": 0.343,
|
| 3315 |
+
"step": 470
|
| 3316 |
+
},
|
| 3317 |
+
{
|
| 3318 |
+
"epoch": 0.7061469265367316,
|
| 3319 |
+
"grad_norm": 0.3359789403389439,
|
| 3320 |
+
"learning_rate": 8.937837217887273e-05,
|
| 3321 |
+
"loss": 0.319,
|
| 3322 |
+
"step": 471
|
| 3323 |
+
},
|
| 3324 |
+
{
|
| 3325 |
+
"epoch": 0.7076461769115442,
|
| 3326 |
+
"grad_norm": 0.37706582391715526,
|
| 3327 |
+
"learning_rate": 8.932842523766065e-05,
|
| 3328 |
+
"loss": 0.3217,
|
| 3329 |
+
"step": 472
|
| 3330 |
+
},
|
| 3331 |
+
{
|
| 3332 |
+
"epoch": 0.7091454272863568,
|
| 3333 |
+
"grad_norm": 0.2782992746944311,
|
| 3334 |
+
"learning_rate": 8.927837516223824e-05,
|
| 3335 |
+
"loss": 0.3403,
|
| 3336 |
+
"step": 473
|
| 3337 |
+
},
|
| 3338 |
+
{
|
| 3339 |
+
"epoch": 0.7106446776611695,
|
| 3340 |
+
"grad_norm": 0.28404551462352956,
|
| 3341 |
+
"learning_rate": 8.922822208385599e-05,
|
| 3342 |
+
"loss": 0.315,
|
| 3343 |
+
"step": 474
|
| 3344 |
+
},
|
| 3345 |
+
{
|
| 3346 |
+
"epoch": 0.712143928035982,
|
| 3347 |
+
"grad_norm": 0.2860491828984938,
|
| 3348 |
+
"learning_rate": 8.917796613403451e-05,
|
| 3349 |
+
"loss": 0.3458,
|
| 3350 |
+
"step": 475
|
| 3351 |
+
},
|
| 3352 |
+
{
|
| 3353 |
+
"epoch": 0.7136431784107946,
|
| 3354 |
+
"grad_norm": 0.3662312678834754,
|
| 3355 |
+
"learning_rate": 8.912760744456415e-05,
|
| 3356 |
+
"loss": 0.3931,
|
| 3357 |
+
"step": 476
|
| 3358 |
+
},
|
| 3359 |
+
{
|
| 3360 |
+
"epoch": 0.7151424287856072,
|
| 3361 |
+
"grad_norm": 0.31234791343768453,
|
| 3362 |
+
"learning_rate": 8.907714614750473e-05,
|
| 3363 |
+
"loss": 0.3634,
|
| 3364 |
+
"step": 477
|
| 3365 |
+
},
|
| 3366 |
+
{
|
| 3367 |
+
"epoch": 0.7166416791604198,
|
| 3368 |
+
"grad_norm": 0.29815368036130224,
|
| 3369 |
+
"learning_rate": 8.902658237518509e-05,
|
| 3370 |
+
"loss": 0.2963,
|
| 3371 |
+
"step": 478
|
| 3372 |
+
},
|
| 3373 |
+
{
|
| 3374 |
+
"epoch": 0.7181409295352323,
|
| 3375 |
+
"grad_norm": 0.23552021666504025,
|
| 3376 |
+
"learning_rate": 8.897591626020284e-05,
|
| 3377 |
+
"loss": 0.3405,
|
| 3378 |
+
"step": 479
|
| 3379 |
+
},
|
| 3380 |
+
{
|
| 3381 |
+
"epoch": 0.719640179910045,
|
| 3382 |
+
"grad_norm": 0.26121806297471106,
|
| 3383 |
+
"learning_rate": 8.892514793542397e-05,
|
| 3384 |
+
"loss": 0.3361,
|
| 3385 |
+
"step": 480
|
| 3386 |
+
},
|
| 3387 |
+
{
|
| 3388 |
+
"epoch": 0.7211394302848576,
|
| 3389 |
+
"grad_norm": 0.2236705711698251,
|
| 3390 |
+
"learning_rate": 8.887427753398248e-05,
|
| 3391 |
+
"loss": 0.2836,
|
| 3392 |
+
"step": 481
|
| 3393 |
+
},
|
| 3394 |
+
{
|
| 3395 |
+
"epoch": 0.7226386806596702,
|
| 3396 |
+
"grad_norm": 0.29173625954304344,
|
| 3397 |
+
"learning_rate": 8.882330518928006e-05,
|
| 3398 |
+
"loss": 0.2999,
|
| 3399 |
+
"step": 482
|
| 3400 |
+
},
|
| 3401 |
+
{
|
| 3402 |
+
"epoch": 0.7241379310344828,
|
| 3403 |
+
"grad_norm": 0.28149246277263024,
|
| 3404 |
+
"learning_rate": 8.877223103498575e-05,
|
| 3405 |
+
"loss": 0.3166,
|
| 3406 |
+
"step": 483
|
| 3407 |
+
},
|
| 3408 |
+
{
|
| 3409 |
+
"epoch": 0.7256371814092953,
|
| 3410 |
+
"grad_norm": 0.32348440311697224,
|
| 3411 |
+
"learning_rate": 8.872105520503559e-05,
|
| 3412 |
+
"loss": 0.2947,
|
| 3413 |
+
"step": 484
|
| 3414 |
+
},
|
| 3415 |
+
{
|
| 3416 |
+
"epoch": 0.7271364317841079,
|
| 3417 |
+
"grad_norm": 0.28498136767124405,
|
| 3418 |
+
"learning_rate": 8.86697778336322e-05,
|
| 3419 |
+
"loss": 0.3612,
|
| 3420 |
+
"step": 485
|
| 3421 |
+
},
|
| 3422 |
+
{
|
| 3423 |
+
"epoch": 0.7286356821589205,
|
| 3424 |
+
"grad_norm": 0.2065250953142658,
|
| 3425 |
+
"learning_rate": 8.861839905524452e-05,
|
| 3426 |
+
"loss": 0.2752,
|
| 3427 |
+
"step": 486
|
| 3428 |
+
},
|
| 3429 |
+
{
|
| 3430 |
+
"epoch": 0.7301349325337332,
|
| 3431 |
+
"grad_norm": 0.27922971095665367,
|
| 3432 |
+
"learning_rate": 8.856691900460739e-05,
|
| 3433 |
+
"loss": 0.3446,
|
| 3434 |
+
"step": 487
|
| 3435 |
+
},
|
| 3436 |
+
{
|
| 3437 |
+
"epoch": 0.7316341829085458,
|
| 3438 |
+
"grad_norm": 0.24554129661586624,
|
| 3439 |
+
"learning_rate": 8.851533781672125e-05,
|
| 3440 |
+
"loss": 0.3301,
|
| 3441 |
+
"step": 488
|
| 3442 |
+
},
|
| 3443 |
+
{
|
| 3444 |
+
"epoch": 0.7331334332833583,
|
| 3445 |
+
"grad_norm": 0.2787894552165883,
|
| 3446 |
+
"learning_rate": 8.846365562685177e-05,
|
| 3447 |
+
"loss": 0.3224,
|
| 3448 |
+
"step": 489
|
| 3449 |
+
},
|
| 3450 |
+
{
|
| 3451 |
+
"epoch": 0.7346326836581709,
|
| 3452 |
+
"grad_norm": 0.2609916330094101,
|
| 3453 |
+
"learning_rate": 8.841187257052944e-05,
|
| 3454 |
+
"loss": 0.3828,
|
| 3455 |
+
"step": 490
|
| 3456 |
+
},
|
| 3457 |
+
{
|
| 3458 |
+
"epoch": 0.7361319340329835,
|
| 3459 |
+
"grad_norm": 0.24196293824238985,
|
| 3460 |
+
"learning_rate": 8.835998878354931e-05,
|
| 3461 |
+
"loss": 0.3443,
|
| 3462 |
+
"step": 491
|
| 3463 |
+
},
|
| 3464 |
+
{
|
| 3465 |
+
"epoch": 0.7376311844077961,
|
| 3466 |
+
"grad_norm": 0.25681730610356324,
|
| 3467 |
+
"learning_rate": 8.830800440197055e-05,
|
| 3468 |
+
"loss": 0.298,
|
| 3469 |
+
"step": 492
|
| 3470 |
+
},
|
| 3471 |
+
{
|
| 3472 |
+
"epoch": 0.7391304347826086,
|
| 3473 |
+
"grad_norm": 0.25278746211884884,
|
| 3474 |
+
"learning_rate": 8.825591956211614e-05,
|
| 3475 |
+
"loss": 0.3513,
|
| 3476 |
+
"step": 493
|
| 3477 |
+
},
|
| 3478 |
+
{
|
| 3479 |
+
"epoch": 0.7406296851574213,
|
| 3480 |
+
"grad_norm": 0.29905568059270327,
|
| 3481 |
+
"learning_rate": 8.820373440057252e-05,
|
| 3482 |
+
"loss": 0.3411,
|
| 3483 |
+
"step": 494
|
| 3484 |
+
},
|
| 3485 |
+
{
|
| 3486 |
+
"epoch": 0.7421289355322339,
|
| 3487 |
+
"grad_norm": 0.25479992559156345,
|
| 3488 |
+
"learning_rate": 8.815144905418917e-05,
|
| 3489 |
+
"loss": 0.3006,
|
| 3490 |
+
"step": 495
|
| 3491 |
+
},
|
| 3492 |
+
{
|
| 3493 |
+
"epoch": 0.7436281859070465,
|
| 3494 |
+
"grad_norm": 0.30913694171782413,
|
| 3495 |
+
"learning_rate": 8.809906366007832e-05,
|
| 3496 |
+
"loss": 0.3306,
|
| 3497 |
+
"step": 496
|
| 3498 |
+
},
|
| 3499 |
+
{
|
| 3500 |
+
"epoch": 0.7451274362818591,
|
| 3501 |
+
"grad_norm": 0.3457652288832713,
|
| 3502 |
+
"learning_rate": 8.804657835561456e-05,
|
| 3503 |
+
"loss": 0.3289,
|
| 3504 |
+
"step": 497
|
| 3505 |
+
},
|
| 3506 |
+
{
|
| 3507 |
+
"epoch": 0.7466266866566716,
|
| 3508 |
+
"grad_norm": 0.27983670458975085,
|
| 3509 |
+
"learning_rate": 8.79939932784345e-05,
|
| 3510 |
+
"loss": 0.3474,
|
| 3511 |
+
"step": 498
|
| 3512 |
+
},
|
| 3513 |
+
{
|
| 3514 |
+
"epoch": 0.7481259370314842,
|
| 3515 |
+
"grad_norm": 0.26020086725871355,
|
| 3516 |
+
"learning_rate": 8.794130856643634e-05,
|
| 3517 |
+
"loss": 0.3125,
|
| 3518 |
+
"step": 499
|
| 3519 |
+
},
|
| 3520 |
+
{
|
| 3521 |
+
"epoch": 0.7496251874062968,
|
| 3522 |
+
"grad_norm": 0.25921150400062415,
|
| 3523 |
+
"learning_rate": 8.78885243577796e-05,
|
| 3524 |
+
"loss": 0.3206,
|
| 3525 |
+
"step": 500
|
| 3526 |
+
}
|
| 3527 |
+
],
|
| 3528 |
+
"logging_steps": 1,
|
| 3529 |
+
"max_steps": 2001,
|
| 3530 |
+
"num_input_tokens_seen": 0,
|
| 3531 |
+
"num_train_epochs": 3,
|
| 3532 |
+
"save_steps": 250,
|
| 3533 |
+
"stateful_callbacks": {
|
| 3534 |
+
"TrainerControl": {
|
| 3535 |
+
"args": {
|
| 3536 |
+
"should_epoch_stop": false,
|
| 3537 |
+
"should_evaluate": false,
|
| 3538 |
+
"should_log": false,
|
| 3539 |
+
"should_save": true,
|
| 3540 |
+
"should_training_stop": false
|
| 3541 |
+
},
|
| 3542 |
+
"attributes": {}
|
| 3543 |
+
}
|
| 3544 |
+
},
|
| 3545 |
+
"total_flos": 346097400086528.0,
|
| 3546 |
+
"train_batch_size": 2,
|
| 3547 |
+
"trial_name": null,
|
| 3548 |
+
"trial_params": null
|
| 3549 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1810b92b16090910c0a215152d65748b8f3be6da52b74c787680b1b930f8fc68
|
| 3 |
+
size 7224
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|