File size: 3,040 Bytes
6008378
6d2e010
 
 
 
 
 
 
 
 
 
 
 
6008378
6d2e010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
task_categories:
- other
language:
- en
tags:
- dataset
- pandas
- parquet
size_categories:
- 1M<n<10M
pretty_name: Plotqa V1
---

# Plotqa V1

## Dataset Description

This dataset was uploaded from a pandas DataFrame.

## Dataset Structure

### Overview

- **Total Examples**: 5,733,893
- **Total Features**: 9
- **Dataset Size**: ~2805.4 MB
- **Format**: Parquet files
- **Created**: 2025-09-22 20:12:01 UTC

### Data Instances

The dataset contains 5,733,893 rows and 9 columns.

### Data Fields

- **image_index** (int64): 0 null values (0.0%), Range: [0.00, 157069.00], Mean: 78036.26
- **qid** (object): 0 null values (0.0%), 74 unique values
- **question_string** (object): 0 null values (0.0%), 1,502,530 unique values
- **answer_bbox** (object): 0 null values (0.0%), 798,805 unique values
- **template** (object): 0 null values (0.0%), 6 unique values
- **answer** (object): 0 null values (0.0%), 1,002,651 unique values
- **answer_id** (int64): 0 null values (0.0%), Range: [0.00, 1481788.00], Mean: 185454.21
- **type** (object): 0 null values (0.0%), 4 unique values
- **question_id** (int64): 0 null values (0.0%), Range: [0.00, 2170651.00], Mean: 441648.27

### Data Splits

| Split | Number of Examples |
|-------|-------------------|
| train | 5,733,893 |

## Dataset Creation

This dataset was created by uploading a pandas DataFrame to Hugging Face Hub using the `datasets` library.

### Source Data

The data was processed and uploaded as parquet files for efficient storage and loading.

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("Abd223653/PlotQA_V1")

# Convert to pandas DataFrame
df = dataset["train"].to_pandas()

print(f"Dataset shape: {df.shape}")
print(f"Columns: {list(df.columns)}")
```

### Streaming (Memory Efficient)

```python
from datasets import load_dataset

# Load dataset in streaming mode
dataset = load_dataset("Abd223653/PlotQA_V1", streaming=True)
train_stream = dataset["train"]

# Process in batches
for batch in train_stream.iter(batch_size=1000):
    # Process your batch here
    print(f"Processing batch with {len(batch['column_name'])} examples")
```

### Basic Data Analysis

```python
import pandas as pd
from datasets import load_dataset

# Load and explore the dataset
dataset = load_dataset("Abd223653/PlotQA_V1")
df = dataset["train"].to_pandas()

# Basic statistics
print(df.info())
print(df.describe())

# Check for missing values
print("Missing values per column:")
print(df.isnull().sum())
```

## Data Quality

### Missing Values

- **Total missing values**: 0
- **Columns with missing values**: 0
- **Percentage of complete rows**: 100.0%

### Data Types

- **int64**: 3 columns
- **object**: 6 columns

## Limitations and Considerations

- This dataset is provided as-is without warranty
- Users should validate data quality for their specific use cases
- Consider the licensing terms when using this dataset
- Large datasets may require streaming or chunked processing