--- language: - ha license: cc-by-4.0 task_categories: - text-to-speech - audio-classification pretty_name: Hausa TTS Dataset size_categories: - n<1K tags: - audio - tts - hausa - speech-synthesis - multi-speaker --- # Hausa TTS Dataset ## Dataset Description This dataset contains Hausa language text-to-speech (TTS) recordings from multiple speakers. It includes audio files paired with their corresponding Hausa text transcriptions. ### Dataset Structure The dataset is organized as follows: ``` ├── data/ │ ├── metadata.csv # Metadata (source, audio paths, text) │ └── audio_files/ │ ├── 97f373e8-f6e6-.../ # Speaker 1 audio files │ ├── b0db0a87-2206-.../ # Speaker 2 audio files │ └── c3621689-ca53-.../ # Speaker 3 audio files └── README.md ``` ### Data Fields The `metadata.csv` contains the following columns: - **file_name**: Relative path to the audio file in WAV format - **source**: Speaker ID (UUID format) identifying the speaker - **text**: Hausa text transcription corresponding to the audio ### Dataset Statistics - **Total Samples**: ~100 recordings - **Number of Speakers**: 3 unique speakers - **Audio Format**: WAV files - **Sample Rate**: 24,000 Hz (target) - **Language**: Hausa (ha) ### Usage #### Loading the Dataset ```python from datasets import load_dataset # Load from Hugging Face dataset = load_dataset("Aybee5/Hausa-loud-tts", split="train") # Access the data print(dataset[0]) # Output: {'source': 'speaker_id', 'audio': {'path': '...', 'array': [...], 'sampling_rate': 24000}, 'text': '...'} ``` #### Example with Audio Processing ```python from datasets import load_dataset, Audio # Load dataset dataset = load_dataset("Aybee5/Hausa-loud-tts", split="train") # Cast audio column to specific sampling rate dataset = dataset.cast_column("audio", Audio(sampling_rate=24000)) # Process audio for example in dataset: audio_array = example["audio"]["array"] sampling_rate = example["audio"]["sampling_rate"] text = example["text"] speaker_id = example["source"] # Your processing here... ``` ### Speaker Information The dataset includes recordings from 3 unique speakers, each identified by a UUID in the `source` field. For training multi-speaker TTS models, you can map these UUIDs to numeric speaker IDs: ```python unique_speakers = sorted(set(dataset["source"])) speaker_to_id = {speaker: idx for idx, speaker in enumerate(unique_speakers)} ``` ### Use Cases This dataset is suitable for: - Text-to-Speech (TTS) model training - Multi-speaker voice synthesis - Hausa language speech research - Voice cloning applications - Speech corpus analysis ### Languages - Hausa (ha) ### Licensing Information This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. ### Citation If you use this dataset in your research, please cite: ``` @dataset{hausa_tts_dataset, title={Hausa TTS Dataset}, author={Your Name}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/datasets/Aybee5/Hausa-loud-tts}} } ``` ### Data Collection and Processing The audio data was collected using MimicStudio recording system and includes native Hausa speakers reading text prompts. All audio files are stored in WAV format with metadata tracked in an SQLite database, which has been exported to CSV format for easy dataset distribution. ### Considerations for Using the Data - Audio quality may vary between speakers - Some audio files may have background noise - Text transcriptions are in Hausa language using Latin script - Speaker characteristics (gender, age, accent) are not explicitly labeled ### Additional Information For questions or issues with this dataset, please open an issue on the dataset repository or contact the dataset maintainer.