Datasets:
Tasks:
Object Detection
Sub-tasks:
face-detection
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
albertvillanova
HF Staff
Replace data URLs in wider_face dataset once hosted on the Hub (#4469)
833d07e
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """WIDER FACE dataset.""" | |
| import os | |
| import datasets | |
| _HOMEPAGE = "http://shuoyang1213.me/WIDERFACE/" | |
| _LICENSE = "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)" | |
| _CITATION = """\ | |
| @inproceedings{yang2016wider, | |
| Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou}, | |
| Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | |
| Title = {WIDER FACE: A Face Detection Benchmark}, | |
| Year = {2016}} | |
| """ | |
| _DESCRIPTION = """\ | |
| WIDER FACE dataset is a face detection benchmark dataset, of which images are | |
| selected from the publicly available WIDER dataset. We choose 32,203 images and | |
| label 393,703 faces with a high degree of variability in scale, pose and | |
| occlusion as depicted in the sample images. WIDER FACE dataset is organized | |
| based on 61 event classes. For each event class, we randomly select 40%/10%/50% | |
| data as training, validation and testing sets. We adopt the same evaluation | |
| metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets, | |
| we do not release bounding box ground truth for the test images. Users are | |
| required to submit final prediction files, which we shall proceed to evaluate. | |
| """ | |
| _REPO = "https://huggingface.co/datasets/wider_face/resolve/main/data" | |
| _URLS = { | |
| "train": f"{_REPO}/WIDER_train.zip", | |
| "validation": f"{_REPO}/WIDER_val.zip", | |
| "test": f"{_REPO}/WIDER_test.zip", | |
| "annot": f"{_REPO}/wider_face_split.zip", | |
| } | |
| class WiderFace(datasets.GeneratorBasedBuilder): | |
| """WIDER FACE dataset.""" | |
| VERSION = datasets.Version("1.0.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "image": datasets.Image(), | |
| "faces": datasets.Sequence( | |
| { | |
| "bbox": datasets.Sequence(datasets.Value("float32"), length=4), | |
| "blur": datasets.ClassLabel(names=["clear", "normal", "heavy"]), | |
| "expression": datasets.ClassLabel(names=["typical", "exaggerate"]), | |
| "illumination": datasets.ClassLabel(names=["normal", "exaggerate "]), | |
| "occlusion": datasets.ClassLabel(names=["no", "partial", "heavy"]), | |
| "pose": datasets.ClassLabel(names=["typical", "atypical"]), | |
| "invalid": datasets.Value("bool"), | |
| } | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_dir = dl_manager.download_and_extract(_URLS) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "split": "train", | |
| "data_dir": data_dir["train"], | |
| "annot_dir": data_dir["annot"], | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "split": "test", | |
| "data_dir": data_dir["test"], | |
| "annot_dir": data_dir["annot"], | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "split": "val", | |
| "data_dir": data_dir["validation"], | |
| "annot_dir": data_dir["annot"], | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, split, data_dir, annot_dir): | |
| image_dir = os.path.join(data_dir, "WIDER_" + split, "images") | |
| annot_fname = "wider_face_test_filelist.txt" if split == "test" else f"wider_face_{split}_bbx_gt.txt" | |
| with open(os.path.join(annot_dir, "wider_face_split", annot_fname), "r", encoding="utf-8") as f: | |
| idx = 0 | |
| while True: | |
| line = f.readline() | |
| line = line.rstrip() | |
| if not line.endswith(".jpg"): | |
| break | |
| image_file_path = os.path.join(image_dir, line) | |
| faces = [] | |
| if split != "test": | |
| # Read number of bounding boxes | |
| nbboxes = int(f.readline()) | |
| # Cases with 0 bounding boxes, still have one line with all zeros. | |
| # So we have to read it and discard it. | |
| if nbboxes == 0: | |
| f.readline() | |
| else: | |
| for _ in range(nbboxes): | |
| line = f.readline() | |
| line = line.rstrip() | |
| line_split = line.split() | |
| assert len(line_split) == 10, f"Cannot parse line: {line_split}" | |
| line_parsed = [int(n) for n in line_split] | |
| ( | |
| xmin, | |
| ymin, | |
| wbox, | |
| hbox, | |
| blur, | |
| expression, | |
| illumination, | |
| invalid, | |
| occlusion, | |
| pose, | |
| ) = line_parsed | |
| faces.append( | |
| { | |
| "bbox": [xmin, ymin, wbox, hbox], | |
| "blur": blur, | |
| "expression": expression, | |
| "illumination": illumination, | |
| "occlusion": occlusion, | |
| "pose": pose, | |
| "invalid": invalid, | |
| } | |
| ) | |
| yield idx, {"image": image_file_path, "faces": faces} | |
| idx += 1 | |