# Dataset Loading Script # Save this as load_dataset.py to use import csv import os from datasets import Dataset, Audio, Value, Features def load_dataset(): # Define features features = Features({ # Preserve original sampling rates by not forcing a fixed rate "audio": Audio(sampling_rate=None), "text": Value("string"), "speaker_id": Value("string"), "language": Value("string"), "emotion": Value("string"), "original_dataset": Value("string"), "original_filename": Value("string"), "start_time": Value("float32"), "end_time": Value("float32"), "duration": Value("float32") }) # Load data from CSV data = { "audio": [], "text": [], "speaker_id": [], "language": [], "emotion": [], "original_dataset": [], "original_filename": [], "start_time": [], "end_time": [], "duration": [] } # Read JSONL import json with open("data.jsonl", "r", encoding="utf-8") as f: for line in f: obj = json.loads(line) data["audio"].append(obj["audio"]) # relative path within repo data["text"].append(obj.get("text", "")) data["speaker_id"].append(obj.get("speaker_id", "")) data["language"].append(obj.get("language", "en")) data["emotion"].append(obj.get("emotion", "neutral")) data["original_dataset"].append(obj.get("original_dataset", "")) data["original_filename"].append(obj.get("original_filename", "")) data["start_time"].append(obj.get("start_time", 0.0)) data["end_time"].append(obj.get("end_time", 0.0)) data["duration"].append(obj.get("duration", 0.0)) # Create dataset dataset = Dataset.from_dict(data, features=features) return dataset # For direct loading if __name__ == "__main__": dataset = load_dataset() print(f"Dataset loaded with {len(dataset)} examples")