Datasets:
:new: Added epicenter mode
Browse files- epicenters.parquet +3 -0
- quakeset.py +77 -38
epicenters.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0632e0fb00f98c957531f9c5defee2cf41e960ae420f03f19a980d20254b613e
|
| 3 |
+
size 15972926
|
quakeset.py
CHANGED
|
@@ -19,6 +19,7 @@ import os
|
|
| 19 |
import datasets
|
| 20 |
import h5py
|
| 21 |
import numpy as np
|
|
|
|
| 22 |
|
| 23 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 24 |
_CITATION = """\
|
|
@@ -38,7 +39,7 @@ _LICENSE = "OPENRAIL"
|
|
| 38 |
|
| 39 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 40 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 41 |
-
_URLS = "earthquakes.h5"
|
| 42 |
|
| 43 |
|
| 44 |
class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
@@ -61,27 +62,48 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 61 |
datasets.BuilderConfig(
|
| 62 |
name="default",
|
| 63 |
version=VERSION,
|
| 64 |
-
description="Default configuration
|
| 65 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
]
|
| 67 |
|
| 68 |
DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 69 |
|
| 70 |
def _info(self):
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
return datasets.DatasetInfo(
|
| 87 |
# This is the description that will appear on the datasets page.
|
|
@@ -105,13 +127,13 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 105 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 106 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 107 |
urls = _URLS
|
| 108 |
-
|
| 109 |
return [
|
| 110 |
datasets.SplitGenerator(
|
| 111 |
name=datasets.Split.TRAIN,
|
| 112 |
# These kwargs will be passed to _generate_examples
|
| 113 |
gen_kwargs={
|
| 114 |
-
"filepath":
|
| 115 |
"split": "train",
|
| 116 |
},
|
| 117 |
),
|
|
@@ -119,7 +141,7 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 119 |
name=datasets.Split.VALIDATION,
|
| 120 |
# These kwargs will be passed to _generate_examples
|
| 121 |
gen_kwargs={
|
| 122 |
-
"filepath":
|
| 123 |
"split": "validation",
|
| 124 |
},
|
| 125 |
),
|
|
@@ -127,7 +149,7 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 127 |
name=datasets.Split.TEST,
|
| 128 |
# These kwargs will be passed to _generate_examples
|
| 129 |
gen_kwargs={
|
| 130 |
-
"filepath":
|
| 131 |
"split": "test",
|
| 132 |
},
|
| 133 |
),
|
|
@@ -136,8 +158,9 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 136 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 137 |
def _generate_examples(self, filepath, split):
|
| 138 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
|
|
|
| 139 |
sample_ids = []
|
| 140 |
-
with h5py.File(filepath) as f:
|
| 141 |
for key, patches in f.items():
|
| 142 |
attributes = dict(f[key].attrs)
|
| 143 |
if attributes["split"] != split:
|
|
@@ -153,14 +176,6 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 153 |
if "x" in sample_id or "y" in sample_id:
|
| 154 |
continue
|
| 155 |
|
| 156 |
-
resource_id, patch_id = sample_id.split("/")
|
| 157 |
-
x = f[resource_id]["x"][...]
|
| 158 |
-
y = f[resource_id]["y"][...]
|
| 159 |
-
x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
|
| 160 |
-
y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
|
| 161 |
-
x = x[x_start * 512 : (x_start + 1) * 512]
|
| 162 |
-
y = y[y_start * 512 : (y_start + 1) * 512]
|
| 163 |
-
|
| 164 |
pre_key = "pre" if label == 1 else "before"
|
| 165 |
post_key = "post" if label == 1 else "pre"
|
| 166 |
pre_sample = f[sample_id][pre_key][...]
|
|
@@ -170,14 +185,38 @@ class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
| 170 |
sample = np.concatenate(
|
| 171 |
[pre_sample, post_sample], axis=0, dtype=np.float32
|
| 172 |
)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
"sample_id": f"{sample_id}/{post_key}",
|
| 176 |
"pre_post_image": sample,
|
| 177 |
-
"affected": label,
|
| 178 |
-
"magnitude": np.float32(attributes["magnitude"]),
|
| 179 |
-
"hypocenter": attributes["hypocenter"],
|
| 180 |
"epsg": attributes["epsg"],
|
| 181 |
-
"x": x.flatten(),
|
| 182 |
-
"y": y.flatten(),
|
| 183 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
import datasets
|
| 20 |
import h5py
|
| 21 |
import numpy as np
|
| 22 |
+
import pandas as pd
|
| 23 |
|
| 24 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 25 |
_CITATION = """\
|
|
|
|
| 39 |
|
| 40 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 41 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 42 |
+
_URLS = ["earthquakes.h5", "epicenters.parquet"]
|
| 43 |
|
| 44 |
|
| 45 |
class QuakeSet(datasets.GeneratorBasedBuilder):
|
|
|
|
| 62 |
datasets.BuilderConfig(
|
| 63 |
name="default",
|
| 64 |
version=VERSION,
|
| 65 |
+
description="Default configuration",
|
| 66 |
+
),
|
| 67 |
+
datasets.BuilderConfig(
|
| 68 |
+
name="epicenter",
|
| 69 |
+
version=VERSION,
|
| 70 |
+
description="Epicenter configuration",
|
| 71 |
+
),
|
| 72 |
]
|
| 73 |
|
| 74 |
DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 75 |
|
| 76 |
def _info(self):
|
| 77 |
+
if self.config.name == "default":
|
| 78 |
+
features = datasets.Features(
|
| 79 |
+
{
|
| 80 |
+
"pre_post_image": datasets.Array3D(
|
| 81 |
+
shape=(4, 512, 512), dtype="float32"
|
| 82 |
+
),
|
| 83 |
+
"affected": datasets.ClassLabel(num_classes=2),
|
| 84 |
+
"magnitude": datasets.Value("float32"),
|
| 85 |
+
"hypocenter": datasets.Sequence(
|
| 86 |
+
datasets.Value("float32"), length=3
|
| 87 |
+
),
|
| 88 |
+
"epsg": datasets.Value("int32"),
|
| 89 |
+
"x": datasets.Sequence(datasets.Value("float32"), length=512),
|
| 90 |
+
"y": datasets.Sequence(datasets.Value("float32"), length=512),
|
| 91 |
+
}
|
| 92 |
+
)
|
| 93 |
+
elif self.config.name == "epicenter":
|
| 94 |
+
features = datasets.Features(
|
| 95 |
+
{
|
| 96 |
+
"pre_post_image": datasets.Array3D(
|
| 97 |
+
shape=(4, 512, 512), dtype="float32"
|
| 98 |
+
),
|
| 99 |
+
"contains_epicenter": datasets.ClassLabel(num_classes=2),
|
| 100 |
+
"epsg": datasets.Value("int32"),
|
| 101 |
+
"epicenter": datasets.Sequence(datasets.Value("float32"), length=2),
|
| 102 |
+
"lon": datasets.Sequence(datasets.Value("float32"), length=512),
|
| 103 |
+
"lat": datasets.Sequence(datasets.Value("float32"), length=512),
|
| 104 |
+
"affected": datasets.ClassLabel(num_classes=2),
|
| 105 |
+
}
|
| 106 |
+
)
|
| 107 |
|
| 108 |
return datasets.DatasetInfo(
|
| 109 |
# This is the description that will appear on the datasets page.
|
|
|
|
| 127 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 128 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 129 |
urls = _URLS
|
| 130 |
+
files = dl_manager.download(urls)
|
| 131 |
return [
|
| 132 |
datasets.SplitGenerator(
|
| 133 |
name=datasets.Split.TRAIN,
|
| 134 |
# These kwargs will be passed to _generate_examples
|
| 135 |
gen_kwargs={
|
| 136 |
+
"filepath": files,
|
| 137 |
"split": "train",
|
| 138 |
},
|
| 139 |
),
|
|
|
|
| 141 |
name=datasets.Split.VALIDATION,
|
| 142 |
# These kwargs will be passed to _generate_examples
|
| 143 |
gen_kwargs={
|
| 144 |
+
"filepath": files,
|
| 145 |
"split": "validation",
|
| 146 |
},
|
| 147 |
),
|
|
|
|
| 149 |
name=datasets.Split.TEST,
|
| 150 |
# These kwargs will be passed to _generate_examples
|
| 151 |
gen_kwargs={
|
| 152 |
+
"filepath": files,
|
| 153 |
"split": "test",
|
| 154 |
},
|
| 155 |
),
|
|
|
|
| 158 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 159 |
def _generate_examples(self, filepath, split):
|
| 160 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 161 |
+
df = pd.read_parquet(filepath[1])
|
| 162 |
sample_ids = []
|
| 163 |
+
with h5py.File(filepath[0]) as f:
|
| 164 |
for key, patches in f.items():
|
| 165 |
attributes = dict(f[key].attrs)
|
| 166 |
if attributes["split"] != split:
|
|
|
|
| 176 |
if "x" in sample_id or "y" in sample_id:
|
| 177 |
continue
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
pre_key = "pre" if label == 1 else "before"
|
| 180 |
post_key = "post" if label == 1 else "pre"
|
| 181 |
pre_sample = f[sample_id][pre_key][...]
|
|
|
|
| 185 |
sample = np.concatenate(
|
| 186 |
[pre_sample, post_sample], axis=0, dtype=np.float32
|
| 187 |
)
|
| 188 |
+
sample_key = f"{sample_id}/{post_key}"
|
| 189 |
+
item = {
|
|
|
|
| 190 |
"pre_post_image": sample,
|
|
|
|
|
|
|
|
|
|
| 191 |
"epsg": attributes["epsg"],
|
|
|
|
|
|
|
| 192 |
}
|
| 193 |
+
|
| 194 |
+
if self.config.name == "default":
|
| 195 |
+
resource_id, patch_id = sample_id.split("/")
|
| 196 |
+
x = f[resource_id]["x"][...]
|
| 197 |
+
y = f[resource_id]["y"][...]
|
| 198 |
+
x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
|
| 199 |
+
y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
|
| 200 |
+
x = x[x_start * 512 : (x_start + 1) * 512]
|
| 201 |
+
y = y[y_start * 512 : (y_start + 1) * 512]
|
| 202 |
+
item |= {
|
| 203 |
+
"affected": label,
|
| 204 |
+
"magnitude": np.float32(attributes["magnitude"]),
|
| 205 |
+
"hypocenter": attributes["hypocenter"],
|
| 206 |
+
"x": x.flatten(),
|
| 207 |
+
"y": y.flatten(),
|
| 208 |
+
}
|
| 209 |
+
elif self.config.name == "epicenter":
|
| 210 |
+
selected_infos = df[df["sample_id"] == sample_key]
|
| 211 |
+
if len(selected_infos) > 1:
|
| 212 |
+
print(selected_infos)
|
| 213 |
+
item |= {
|
| 214 |
+
"affected": label,
|
| 215 |
+
"contains_epicenter": label == 1
|
| 216 |
+
and selected_infos["contains_epicenter"].item(),
|
| 217 |
+
"epicenter": selected_infos["epicenter"].item(),
|
| 218 |
+
"lon": selected_infos["lon"].item(),
|
| 219 |
+
"lat": selected_infos["lat"].item(),
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
yield sample_key, item
|