voorhs commited on
Commit
95bb4b4
·
verified ·
1 Parent(s): 0c07c5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -25
README.md CHANGED
@@ -74,21 +74,12 @@ from datasets import Dataset as HFDataset
74
  from datasets import load_dataset
75
 
76
  from autointent import Dataset
77
- from autointent.schemas import Intent, Sample
78
 
79
- # these classes contain too few sampls
80
- names_to_remove = [
81
- "partnerships & alliances",
82
- "patent publication",
83
- "subsidiary establishment",
84
- "department establishment",
85
- ]
86
 
87
  def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
88
  """Extract intent names and assign ids to them."""
89
  intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
90
- for n in names_to_remove:
91
- intent_names.remove(n)
92
  return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
93
 
94
 
@@ -105,30 +96,42 @@ def converting_mapping(example: dict, intents_data: list[Intent]) -> dict[str, s
105
  return res
106
 
107
 
108
- def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[Sample]:
109
  """Convert one split into desired format."""
110
  events_split = events_split.map(
111
  converting_mapping, remove_columns=events_split.features.keys(),
112
  fn_kwargs={"intents_data": intents_data}
113
  )
114
 
115
- samples = []
116
- for sample in events_split.to_list():
117
- if sample["utterance"] is None:
118
- continue
119
- samples.append(sample)
120
 
121
- mask = [sample["label"] is None for sample in samples]
122
- n_oos_samples = sum(mask)
123
- n_in_domain_samples = len(samples) - n_oos_samples
124
-
125
- print(f"{n_oos_samples=}")
126
- print(f"{n_in_domain_samples=}\n")
127
 
128
- # actually there are too few oos samples to include them, so filter out
129
- samples = list(filter(lambda sample: sample["label"] is not None, samples))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
- return [Sample(**sample) for sample in samples]
 
 
132
 
133
  if __name__ == "__main__":
134
  # `load_dataset` might not work
@@ -140,6 +143,11 @@ if __name__ == "__main__":
140
  train_samples = convert_events(events_dataset["train"], intents_data)
141
  test_samples = convert_events(events_dataset["test"], intents_data)
142
 
 
 
 
 
 
143
  events_converted = Dataset.from_dict(
144
  {"train": train_samples, "test": test_samples, "intents": intents_data}
145
  )
 
74
  from datasets import load_dataset
75
 
76
  from autointent import Dataset
77
+ from autointent.schemas import Intent
78
 
 
 
 
 
 
 
 
79
 
80
  def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
81
  """Extract intent names and assign ids to them."""
82
  intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
 
 
83
  return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
84
 
85
 
 
96
  return res
97
 
98
 
99
+ def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[dict]:
100
  """Convert one split into desired format."""
101
  events_split = events_split.map(
102
  converting_mapping, remove_columns=events_split.features.keys(),
103
  fn_kwargs={"intents_data": intents_data}
104
  )
105
 
106
+ return [sample for sample in events_split if sample["utterance"] is not None]
 
 
 
 
107
 
 
 
 
 
 
 
108
 
109
+ def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]:
110
+ res = [0] * len(intent_names)
111
+ for sample in ds:
112
+ for i, indicator in enumerate(sample["label"]):
113
+ res[i] += indicator
114
+ for i in range(len(intent_names)):
115
+ res[i] /= len(ds)
116
+ return [(frac < fraction_thresh) for frac in res]
117
+
118
+
119
+ def remove_low_resource_classes(ds: list[dict], mask: list[bool]) -> list[dict]:
120
+ res = []
121
+ for sample in ds:
122
+ if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
123
+ continue
124
+ sample["label"] = [
125
+ indicator for indicator, low_resource in
126
+ zip(sample["label"], mask, strict=True) if not low_resource
127
+ ]
128
+ res.append(sample)
129
+ return res
130
+
131
 
132
+ def remove_oos(ds: list[dict]):
133
+ return [sample for sample in ds if sum(sample["label"]) != 0]
134
+
135
 
136
  if __name__ == "__main__":
137
  # `load_dataset` might not work
 
143
  train_samples = convert_events(events_dataset["train"], intents_data)
144
  test_samples = convert_events(events_dataset["test"], intents_data)
145
 
146
+ intents_names = [intent.name for intent in intents_data]
147
+ mask = get_low_resource_classes_mask(train_samples, intents_names)
148
+ train_samples = remove_oos(remove_low_resource_classes(train_samples, mask))
149
+ test_samples = remove_oos(remove_low_resource_classes(test_samples, mask))
150
+
151
  events_converted = Dataset.from_dict(
152
  {"train": train_samples, "test": test_samples, "intents": intents_data}
153
  )