Update README.md
Browse files
README.md
CHANGED
|
@@ -74,21 +74,12 @@ from datasets import Dataset as HFDataset
|
|
| 74 |
from datasets import load_dataset
|
| 75 |
|
| 76 |
from autointent import Dataset
|
| 77 |
-
from autointent.schemas import Intent
|
| 78 |
|
| 79 |
-
# these classes contain too few sampls
|
| 80 |
-
names_to_remove = [
|
| 81 |
-
"partnerships & alliances",
|
| 82 |
-
"patent publication",
|
| 83 |
-
"subsidiary establishment",
|
| 84 |
-
"department establishment",
|
| 85 |
-
]
|
| 86 |
|
| 87 |
def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
|
| 88 |
"""Extract intent names and assign ids to them."""
|
| 89 |
intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
|
| 90 |
-
for n in names_to_remove:
|
| 91 |
-
intent_names.remove(n)
|
| 92 |
return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
|
| 93 |
|
| 94 |
|
|
@@ -105,30 +96,42 @@ def converting_mapping(example: dict, intents_data: list[Intent]) -> dict[str, s
|
|
| 105 |
return res
|
| 106 |
|
| 107 |
|
| 108 |
-
def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[
|
| 109 |
"""Convert one split into desired format."""
|
| 110 |
events_split = events_split.map(
|
| 111 |
converting_mapping, remove_columns=events_split.features.keys(),
|
| 112 |
fn_kwargs={"intents_data": intents_data}
|
| 113 |
)
|
| 114 |
|
| 115 |
-
|
| 116 |
-
for sample in events_split.to_list():
|
| 117 |
-
if sample["utterance"] is None:
|
| 118 |
-
continue
|
| 119 |
-
samples.append(sample)
|
| 120 |
|
| 121 |
-
mask = [sample["label"] is None for sample in samples]
|
| 122 |
-
n_oos_samples = sum(mask)
|
| 123 |
-
n_in_domain_samples = len(samples) - n_oos_samples
|
| 124 |
-
|
| 125 |
-
print(f"{n_oos_samples=}")
|
| 126 |
-
print(f"{n_in_domain_samples=}\n")
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
|
| 133 |
if __name__ == "__main__":
|
| 134 |
# `load_dataset` might not work
|
|
@@ -140,6 +143,11 @@ if __name__ == "__main__":
|
|
| 140 |
train_samples = convert_events(events_dataset["train"], intents_data)
|
| 141 |
test_samples = convert_events(events_dataset["test"], intents_data)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
events_converted = Dataset.from_dict(
|
| 144 |
{"train": train_samples, "test": test_samples, "intents": intents_data}
|
| 145 |
)
|
|
|
|
| 74 |
from datasets import load_dataset
|
| 75 |
|
| 76 |
from autointent import Dataset
|
| 77 |
+
from autointent.schemas import Intent
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
|
| 81 |
"""Extract intent names and assign ids to them."""
|
| 82 |
intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
|
|
|
|
|
|
|
| 83 |
return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
|
| 84 |
|
| 85 |
|
|
|
|
| 96 |
return res
|
| 97 |
|
| 98 |
|
| 99 |
+
def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[dict]:
|
| 100 |
"""Convert one split into desired format."""
|
| 101 |
events_split = events_split.map(
|
| 102 |
converting_mapping, remove_columns=events_split.features.keys(),
|
| 103 |
fn_kwargs={"intents_data": intents_data}
|
| 104 |
)
|
| 105 |
|
| 106 |
+
return [sample for sample in events_split if sample["utterance"] is not None]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]:
|
| 110 |
+
res = [0] * len(intent_names)
|
| 111 |
+
for sample in ds:
|
| 112 |
+
for i, indicator in enumerate(sample["label"]):
|
| 113 |
+
res[i] += indicator
|
| 114 |
+
for i in range(len(intent_names)):
|
| 115 |
+
res[i] /= len(ds)
|
| 116 |
+
return [(frac < fraction_thresh) for frac in res]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def remove_low_resource_classes(ds: list[dict], mask: list[bool]) -> list[dict]:
|
| 120 |
+
res = []
|
| 121 |
+
for sample in ds:
|
| 122 |
+
if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
|
| 123 |
+
continue
|
| 124 |
+
sample["label"] = [
|
| 125 |
+
indicator for indicator, low_resource in
|
| 126 |
+
zip(sample["label"], mask, strict=True) if not low_resource
|
| 127 |
+
]
|
| 128 |
+
res.append(sample)
|
| 129 |
+
return res
|
| 130 |
+
|
| 131 |
|
| 132 |
+
def remove_oos(ds: list[dict]):
|
| 133 |
+
return [sample for sample in ds if sum(sample["label"]) != 0]
|
| 134 |
+
|
| 135 |
|
| 136 |
if __name__ == "__main__":
|
| 137 |
# `load_dataset` might not work
|
|
|
|
| 143 |
train_samples = convert_events(events_dataset["train"], intents_data)
|
| 144 |
test_samples = convert_events(events_dataset["test"], intents_data)
|
| 145 |
|
| 146 |
+
intents_names = [intent.name for intent in intents_data]
|
| 147 |
+
mask = get_low_resource_classes_mask(train_samples, intents_names)
|
| 148 |
+
train_samples = remove_oos(remove_low_resource_classes(train_samples, mask))
|
| 149 |
+
test_samples = remove_oos(remove_low_resource_classes(test_samples, mask))
|
| 150 |
+
|
| 151 |
events_converted = Dataset.from_dict(
|
| 152 |
{"train": train_samples, "test": test_samples, "intents": intents_data}
|
| 153 |
)
|