File size: 13,062 Bytes
504cfd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0d748
1fba7c5
7d0d748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7999e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab775b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8612bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009820d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63a42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b8179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f244a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd9c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a1da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0d748
 
 
 
 
 
 
 
 
1fba7c5
 
 
 
 
 
 
 
7999e87
 
 
 
 
 
 
 
ab775b2
 
 
 
 
 
 
 
f8612bd
 
 
 
 
 
 
 
009820d
 
 
 
 
 
 
 
a63a42e
 
 
 
 
 
 
 
43b8179
 
 
 
 
 
 
 
3f244a2
 
 
 
 
 
 
 
2bd9c10
 
 
 
 
 
 
 
81a1da6
 
 
 
 
 
 
 
5f0a4a2
 
a23b127
5f0a4a2
 
 
a23b127
5f0a4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adb639
 
5f0a4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645928f
5f0a4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645928f
 
7092c27
645928f
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0a4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85e3a9
5f0a4a2
 
 
e85e3a9
5f0a4a2
 
 
e85e3a9
5f0a4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adb639
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IndicXNLI
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
dataset_info:
- config_name: as
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 172049648
    num_examples: 392702
  - name: test
    num_bytes: 2097452
    num_examples: 5010
  - name: validation
    num_bytes: 1042526
    num_examples: 2490
  download_size: 74371257
  dataset_size: 175189626
- config_name: bn
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 174095464
    num_examples: 392702
  - name: test
    num_bytes: 2113149
    num_examples: 5010
  - name: validation
    num_bytes: 1044438
    num_examples: 2490
  download_size: 74466392
  dataset_size: 177253051
- config_name: gu
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 167102046
    num_examples: 392702
  - name: test
    num_bytes: 2016682
    num_examples: 5010
  - name: validation
    num_bytes: 992611
    num_examples: 2490
  download_size: 73329179
  dataset_size: 170111339
- config_name: hi
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 175582034
    num_examples: 392702
  - name: test
    num_bytes: 2109705
    num_examples: 5010
  - name: validation
    num_bytes: 1043487
    num_examples: 2490
  download_size: 74840429
  dataset_size: 178735226
- config_name: kn
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 188780510
    num_examples: 392702
  - name: test
    num_bytes: 2309807
    num_examples: 5010
  - name: validation
    num_bytes: 1139277
    num_examples: 2490
  download_size: 78285369
  dataset_size: 192229594
- config_name: ml
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 187851515
    num_examples: 392702
  - name: test
    num_bytes: 2362836
    num_examples: 5010
  - name: validation
    num_bytes: 1171953
    num_examples: 2490
  download_size: 77263292
  dataset_size: 191386304
- config_name: mr
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 170752688
    num_examples: 392702
  - name: test
    num_bytes: 2078079
    num_examples: 5010
  - name: validation
    num_bytes: 1028494
    num_examples: 2490
  download_size: 73035248
  dataset_size: 173859261
- config_name: or
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 173273552
    num_examples: 392702
  - name: test
    num_bytes: 2135557
    num_examples: 5010
  - name: validation
    num_bytes: 1047017
    num_examples: 2490
  download_size: 73223669
  dataset_size: 176456126
- config_name: pa
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 172665273
    num_examples: 392702
  - name: test
    num_bytes: 2077462
    num_examples: 5010
  - name: validation
    num_bytes: 1030309
    num_examples: 2490
  download_size: 73760675
  dataset_size: 175773044
- config_name: ta
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 206105782
    num_examples: 392702
  - name: test
    num_bytes: 2520985
    num_examples: 5010
  - name: validation
    num_bytes: 1637644
    num_examples: 3238
  download_size: 79964341
  dataset_size: 210264411
- config_name: te
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 175597688
    num_examples: 392702
  - name: test
    num_bytes: 2145349
    num_examples: 5010
  - name: validation
    num_bytes: 1056174
    num_examples: 2490
  download_size: 75184880
  dataset_size: 178799211
configs:
- config_name: as
  data_files:
  - split: train
    path: as/train-*
  - split: test
    path: as/test-*
  - split: validation
    path: as/validation-*
- config_name: bn
  data_files:
  - split: train
    path: bn/train-*
  - split: test
    path: bn/test-*
  - split: validation
    path: bn/validation-*
- config_name: gu
  data_files:
  - split: train
    path: gu/train-*
  - split: test
    path: gu/test-*
  - split: validation
    path: gu/validation-*
- config_name: hi
  data_files:
  - split: train
    path: hi/train-*
  - split: test
    path: hi/test-*
  - split: validation
    path: hi/validation-*
- config_name: kn
  data_files:
  - split: train
    path: kn/train-*
  - split: test
    path: kn/test-*
  - split: validation
    path: kn/validation-*
- config_name: ml
  data_files:
  - split: train
    path: ml/train-*
  - split: test
    path: ml/test-*
  - split: validation
    path: ml/validation-*
- config_name: mr
  data_files:
  - split: train
    path: mr/train-*
  - split: test
    path: mr/test-*
  - split: validation
    path: mr/validation-*
- config_name: or
  data_files:
  - split: train
    path: or/train-*
  - split: test
    path: or/test-*
  - split: validation
    path: or/validation-*
- config_name: pa
  data_files:
  - split: train
    path: pa/train-*
  - split: test
    path: pa/test-*
  - split: validation
    path: pa/validation-*
- config_name: ta
  data_files:
  - split: train
    path: ta/train-*
  - split: test
    path: ta/test-*
  - split: validation
    path: ta/validation-*
- config_name: te
  data_files:
  - split: train
    path: te/train-*
  - split: test
    path: te/test-*
  - split: validation
    path: te/validation-*
---

# Dataset Card for "IndicXNLI"

## Table of Contents

- [Dataset Card for "IndicXNLI"](#dataset-card-for-indicxnli)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)

## Dataset Description

- **Homepage:** <https://github.com/divyanshuaggarwal/IndicXNLI>
- **Paper:** [IndicXNLI: Evaluating Multilingual Inference for Indian Languages](https://arxiv.org/abs/2204.08776)
- **Point of Contact:** [Divyanshu Aggarwal](mailto:[email protected])

### Dataset Summary

INDICXNLI is similar to existing
XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI
data for eleven major Indic languages that includes
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’),
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’),
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi
(‘hi’), and Bengali (‘bn’).

### Supported Tasks and Leaderboards

**Tasks:** Natural Language Inference

**Leaderboards:** Currently there is no Leaderboard for this dataset.

### Languages

- `Assamese (as)`
- `Bengali (bn)`
- `Gujarati (gu)`
- `Kannada (kn)`
- `Hindi (hi)`
- `Malayalam (ml)`
- `Marathi (mr)`
- `Oriya (or)`
- `Punjabi (pa)`
- `Tamil (ta)`
- `Telugu (te)`

## Dataset Structure

### Data Instances

One example from the `hi` dataset is given below in JSON format.

  ```python
 {'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
 'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
 'label': 1 (neutral) }
  ```

### Data Fields

- `premise (string)`: Premise Sentence
- `hypothesis (string)`: Hypothesis Sentence
- `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise.

### Data Splits

<!-- Below is the dataset split given for `hi` dataset.

```python
DatasetDict({
    train: Dataset({
        features: ['premise', 'hypothesis', 'label'],
        num_rows: 392702
    })
    test: Dataset({
        features: ['premise', 'hypothesis', 'label'],
        num_rows: 5010
    })
    validation: Dataset({
        features: ['premise', 'hypothesis', 'label'],
        num_rows: 2490
    })
})

``` -->

Language      | ISO 639-1 Code |Train | Test | Dev |
--------------|----------------|-------|-----|------|
Assamese | as | 392,702 | 5,010 | 2,490 |
Bengali | bn | 392,702 | 5,010 | 2,490 |
Gujarati | gu |  392,702 | 5,010 | 2,490 |
Hindi | hi | 392,702 | 5,010 | 2,490 |
Kannada | kn |  392,702 | 5,010 | 2,490 |
Malayalam | ml |392,702  | 5,010 | 2,490 |
Marathi | mr |392,702 | 5,010 | 2,490 |
Oriya | or | 392,702 | 5,010 | 2,490 |
Punjabi | pa | 392,702 | 5,010 | 2,490 |
Tamil | ta | 392,702 | 5,010 | 2,490 |
Telugu | te | 392,702 | 5,010 | 2,490 |

<!-- The dataset split remains same across all languages. -->

## Dataset usage

Code snippet for using the dataset using datasets library.

```python
from datasets import load_dataset

dataset = load_dataset("Divyanshu/indicxnli")
```

## Dataset Creation
Machine translation of XNLI english dataset to 11 listed Indic Languages.

### Curation Rationale

[More information needed]

### Source Data

[XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/)

#### Initial Data Collection and Normalization

[Detailed in the paper](https://arxiv.org/abs/2204.08776)

#### Who are the source language producers?

[Detailed in the paper](https://arxiv.org/abs/2204.08776)

#### Human Verification Process

[Detailed in the paper](https://arxiv.org/abs/2204.08776)


## Considerations for Using the Data

### Social Impact of Dataset

[Detailed in the paper](https://arxiv.org/abs/2204.08776)

### Discussion of Biases

[Detailed in the paper](https://arxiv.org/abs/2204.08776)

### Other Known Limitations

[Detailed in the paper](https://arxiv.org/abs/2204.08776)

### Dataset Curators

Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan

### Licensing Information

Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.

### Citation Information

If you use any of the datasets, models or code modules, please cite the following paper:

```
@misc{https://doi.org/10.48550/arxiv.2204.08776,
  doi = {10.48550/ARXIV.2204.08776},
  
  url = {https://arxiv.org/abs/2204.08776},
  
  author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, 
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution 4.0 International}
}
```

<!-- ### Contributions -->