Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
1M - 10M
ArXiv:
License:
File size: 13,062 Bytes
504cfd6 7d0d748 1fba7c5 7d0d748 1fba7c5 7999e87 ab775b2 f8612bd 009820d a63a42e 43b8179 3f244a2 2bd9c10 81a1da6 7d0d748 1fba7c5 7999e87 ab775b2 f8612bd 009820d a63a42e 43b8179 3f244a2 2bd9c10 81a1da6 5f0a4a2 a23b127 5f0a4a2 a23b127 5f0a4a2 9adb639 5f0a4a2 645928f 5f0a4a2 645928f 7092c27 645928f 5f0a4a2 e85e3a9 5f0a4a2 e85e3a9 5f0a4a2 e85e3a9 5f0a4a2 9adb639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IndicXNLI
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
dataset_info:
- config_name: as
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 172049648
num_examples: 392702
- name: test
num_bytes: 2097452
num_examples: 5010
- name: validation
num_bytes: 1042526
num_examples: 2490
download_size: 74371257
dataset_size: 175189626
- config_name: bn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 174095464
num_examples: 392702
- name: test
num_bytes: 2113149
num_examples: 5010
- name: validation
num_bytes: 1044438
num_examples: 2490
download_size: 74466392
dataset_size: 177253051
- config_name: gu
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 167102046
num_examples: 392702
- name: test
num_bytes: 2016682
num_examples: 5010
- name: validation
num_bytes: 992611
num_examples: 2490
download_size: 73329179
dataset_size: 170111339
- config_name: hi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 175582034
num_examples: 392702
- name: test
num_bytes: 2109705
num_examples: 5010
- name: validation
num_bytes: 1043487
num_examples: 2490
download_size: 74840429
dataset_size: 178735226
- config_name: kn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 188780510
num_examples: 392702
- name: test
num_bytes: 2309807
num_examples: 5010
- name: validation
num_bytes: 1139277
num_examples: 2490
download_size: 78285369
dataset_size: 192229594
- config_name: ml
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 187851515
num_examples: 392702
- name: test
num_bytes: 2362836
num_examples: 5010
- name: validation
num_bytes: 1171953
num_examples: 2490
download_size: 77263292
dataset_size: 191386304
- config_name: mr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 170752688
num_examples: 392702
- name: test
num_bytes: 2078079
num_examples: 5010
- name: validation
num_bytes: 1028494
num_examples: 2490
download_size: 73035248
dataset_size: 173859261
- config_name: or
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 173273552
num_examples: 392702
- name: test
num_bytes: 2135557
num_examples: 5010
- name: validation
num_bytes: 1047017
num_examples: 2490
download_size: 73223669
dataset_size: 176456126
- config_name: pa
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 172665273
num_examples: 392702
- name: test
num_bytes: 2077462
num_examples: 5010
- name: validation
num_bytes: 1030309
num_examples: 2490
download_size: 73760675
dataset_size: 175773044
- config_name: ta
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 206105782
num_examples: 392702
- name: test
num_bytes: 2520985
num_examples: 5010
- name: validation
num_bytes: 1637644
num_examples: 3238
download_size: 79964341
dataset_size: 210264411
- config_name: te
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 175597688
num_examples: 392702
- name: test
num_bytes: 2145349
num_examples: 5010
- name: validation
num_bytes: 1056174
num_examples: 2490
download_size: 75184880
dataset_size: 178799211
configs:
- config_name: as
data_files:
- split: train
path: as/train-*
- split: test
path: as/test-*
- split: validation
path: as/validation-*
- config_name: bn
data_files:
- split: train
path: bn/train-*
- split: test
path: bn/test-*
- split: validation
path: bn/validation-*
- config_name: gu
data_files:
- split: train
path: gu/train-*
- split: test
path: gu/test-*
- split: validation
path: gu/validation-*
- config_name: hi
data_files:
- split: train
path: hi/train-*
- split: test
path: hi/test-*
- split: validation
path: hi/validation-*
- config_name: kn
data_files:
- split: train
path: kn/train-*
- split: test
path: kn/test-*
- split: validation
path: kn/validation-*
- config_name: ml
data_files:
- split: train
path: ml/train-*
- split: test
path: ml/test-*
- split: validation
path: ml/validation-*
- config_name: mr
data_files:
- split: train
path: mr/train-*
- split: test
path: mr/test-*
- split: validation
path: mr/validation-*
- config_name: or
data_files:
- split: train
path: or/train-*
- split: test
path: or/test-*
- split: validation
path: or/validation-*
- config_name: pa
data_files:
- split: train
path: pa/train-*
- split: test
path: pa/test-*
- split: validation
path: pa/validation-*
- config_name: ta
data_files:
- split: train
path: ta/train-*
- split: test
path: ta/test-*
- split: validation
path: ta/validation-*
- config_name: te
data_files:
- split: train
path: te/train-*
- split: test
path: te/test-*
- split: validation
path: te/validation-*
---
# Dataset Card for "IndicXNLI"
## Table of Contents
- [Dataset Card for "IndicXNLI"](#dataset-card-for-indicxnli)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
## Dataset Description
- **Homepage:** <https://github.com/divyanshuaggarwal/IndicXNLI>
- **Paper:** [IndicXNLI: Evaluating Multilingual Inference for Indian Languages](https://arxiv.org/abs/2204.08776)
- **Point of Contact:** [Divyanshu Aggarwal](mailto:[email protected])
### Dataset Summary
INDICXNLI is similar to existing
XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI
data for eleven major Indic languages that includes
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’),
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’),
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi
(‘hi’), and Bengali (‘bn’).
### Supported Tasks and Leaderboards
**Tasks:** Natural Language Inference
**Leaderboards:** Currently there is no Leaderboard for this dataset.
### Languages
- `Assamese (as)`
- `Bengali (bn)`
- `Gujarati (gu)`
- `Kannada (kn)`
- `Hindi (hi)`
- `Malayalam (ml)`
- `Marathi (mr)`
- `Oriya (or)`
- `Punjabi (pa)`
- `Tamil (ta)`
- `Telugu (te)`
## Dataset Structure
### Data Instances
One example from the `hi` dataset is given below in JSON format.
```python
{'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
'label': 1 (neutral) }
```
### Data Fields
- `premise (string)`: Premise Sentence
- `hypothesis (string)`: Hypothesis Sentence
- `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise.
### Data Splits
<!-- Below is the dataset split given for `hi` dataset.
```python
DatasetDict({
train: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 392702
})
test: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 5010
})
validation: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 2490
})
})
``` -->
Language | ISO 639-1 Code |Train | Test | Dev |
--------------|----------------|-------|-----|------|
Assamese | as | 392,702 | 5,010 | 2,490 |
Bengali | bn | 392,702 | 5,010 | 2,490 |
Gujarati | gu | 392,702 | 5,010 | 2,490 |
Hindi | hi | 392,702 | 5,010 | 2,490 |
Kannada | kn | 392,702 | 5,010 | 2,490 |
Malayalam | ml |392,702 | 5,010 | 2,490 |
Marathi | mr |392,702 | 5,010 | 2,490 |
Oriya | or | 392,702 | 5,010 | 2,490 |
Punjabi | pa | 392,702 | 5,010 | 2,490 |
Tamil | ta | 392,702 | 5,010 | 2,490 |
Telugu | te | 392,702 | 5,010 | 2,490 |
<!-- The dataset split remains same across all languages. -->
## Dataset usage
Code snippet for using the dataset using datasets library.
```python
from datasets import load_dataset
dataset = load_dataset("Divyanshu/indicxnli")
```
## Dataset Creation
Machine translation of XNLI english dataset to 11 listed Indic Languages.
### Curation Rationale
[More information needed]
### Source Data
[XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/)
#### Initial Data Collection and Normalization
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
#### Who are the source language producers?
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
#### Human Verification Process
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
## Considerations for Using the Data
### Social Impact of Dataset
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Discussion of Biases
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Other Known Limitations
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Dataset Curators
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan
### Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
### Citation Information
If you use any of the datasets, models or code modules, please cite the following paper:
```
@misc{https://doi.org/10.48550/arxiv.2204.08776,
doi = {10.48550/ARXIV.2204.08776},
url = {https://arxiv.org/abs/2204.08776},
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!-- ### Contributions -->
|